QUALITY ASSURANCE PROJECT PLAN

For

Dimock Residential Groundwater Site Dimock, Susquehanna County, Pennsylvania TDD No: TL01-11-12-001 Contract No: EP-S3-10-04

EPA Region III START IV - West

Superfund Technical Assessment and Response Team

Submitted to: Richard Fetzer, On-Scene Coordinator
United States Environmental Protection Agency, Region III
1650 Arch Street
Philadelphia, Pennsylvania 19103

February 2012

QUALITY ASSURANCE PROJECT PLAN

Dimock Residential Groundwater Site Dimock, Susquehanna County, Pennsylvania EPA Region 3

February 2012

Prepared by:

TechLaw, Inc.

Approved:	TechLaw START Region 3 Point of Contact	2/5/2012 Date
Approved:	TechLaw Quality Assurance Officer	2/5/2012 Date
Approved:	TechLaw Site Lead	2/5/2012 Date
Approved:	EPA Region 3 Quality Assurance Officer	Date
Approved:	EPA Region 3 Task Order Manager	Date

Record of Changes						
Document Number	Revision Number	Revision Date	Document Changes			
None	0	February 2012	Original			

Table of Contents Revision Number: 0 Date: February 2012 Page i of iii

TABLE OF CONTENTS

Secti	<u>on</u>	Page
Title	and Approval Sheet	
	e of Contents	i
	ibution List	
	nyms List	
Intro	duction	1
	A.1 Project/Task Organization	
	A.2 Problem Definition/Background	
	A.3 Project/Task Description.	
	A.4 Quality Objectives and Criteria	
	A.4.1 Data Quality Objectives	
	A.4.2 Measurement Performance Criteria	
	A.4.3 Decision Rules	
	A.5 Special Training/Certification	6
	A.6 Documents and Records	6
B.	Data Generation and Acquisition	1
	B.1 Sampling Process Design	1
	B.2 Sampling Methods	
	B.3 Sampling Handling and Custody	
	B.4 Analytical Methods	
	B.5 Quality Control	
	B.6 Instrument/Equipment Testing, Inspection and Maintenance	
	B.7 Instrument/Equipment Calibration and Frequency	
	B.8 Inspection/Acceptance of Supplies and Consumables	
	B.9 Non-direct Measurements	
	B.10 Data Management	4
C.	Assessment and Oversight	
	C.1 Assessments and Response Actions	
	C.2 Reports to Management	1
_		
D.	Data Validation and Usability	1

Table of Contents Revision Number: 0 Date: February 2012 Page ii of iii

Figure

A.1 ST	ART Region 3	Sampling Proi	t OrganizationA	-2
--------	--------------	---------------	-----------------	----

Appendices

- A. Example Chain-of-Custody Form, Sample Identification Tag and Custody Seals
- B. TechLaw Standard Operating Procedure List
- C. Collection of Groundwater Samples from Domestic and Municipal Water Wells for Dissolved Gas Analysis, Isotech Laboratories Inc.

Distribution List

TechLaw Site LeadTechLaw Point of ContactTechLaw QA Officer

Mr. R. Fetzer - EPA Region 3 Work Assignment Manager Mr. R. Rupert – EPA Region 3 On-Scene Coordinator

EPA Region 3 QA Officer

Table of Contents Revision Number: 0 Date: February 2012 Page iii of iii

ACRONYMS

CLP Contract Laboratory Program

DO Dissolved Oxygen
DQO Data Quality Objective
EDD Electronic Data Deliverable
EPA Environmental Protection Agency
ERT Environmental Response Team

ESAT Environmental Services Assessment Team

GPS Global Positioning System
GRO Gasoline Range Organics
HASP Health and Safety Plan
ICS Incident Command System
LAT Laboratory Assistance Team
LCS Laboratory Control Sample
MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix Spike Duplicate

OASQA Office of Analytical Services and Quality Assurance

ORP Oxidation Reduction Potential

OSC On-Scene Coordinator

PA Pennsylvania

PAGWIS Pennsylvania Ground Water Information System

PARCC Precision, Accuracy, Representativeness, Comparability, and Completeness

POC Point of Contact

PQAPP Program Quality Assurance Project Plan

QA Quality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control

SOP Standard Operating Procedure

START Superfund Technical Assessment and Response Team

TDD Technical Direction Document

TR Traffic Report

VOC Volatile Organic Compound

Section: A Revision Number: 0 Date: February 2012 Page 1 of 6

INTRODUCTION

This document is the site-specific Quality Assurance Project Plan (QAPP) for sample collection and analysis at the Dimock Residential Groundwater Site in Dimock, Pennsylvania, under the Superfund Technical Assessment and Response Team (START) contract in EPA Region 3.

This document will be used in conjunction with TechLaw's Program Quality Assurance Project Plan (PQAPP) for Sample Collection and Analysis for Superfund Technical Assessment and Response Team (START) EPA Region 3, dated July 2010. Additionally, TechLaw's Sampling QA/QC Work Plan (Rev01), dated February 3, 2012 will be used as referenced.

A.1 Project/Task Organization

EPA On-Scene Coordinator Richard Fetzer will provide overall direction to TechLaw (START) staff concerning project sampling requirements, objectives, and schedule.

The TechLaw START 3 Point of Contact (POC) is _______ is the primary contact for contract related matters on START Region 3.

The TechLaw START Site Leader, is the primary point of contact with the EPA OSC. The Site Leader is responsible for the development and completion of the Sampling QA/QC Work Plan, project team organization, and supervision of all project tasks, including reports and deliverables.

The TechLaw QA Officer, will remain independent of the groups responsible for data generation. The QA Officer, or his designee will provide QA/QC assistance to the TechLaw Site Leader. The QA Officer will also be responsible for final internal review and approval of the QAPP.

The TechLaw Field Team will conduct the actual field work per this QAPP.

The TechLaw Laboratory Assistance Team (LAT) will coordinate with the analytical laboratories.

The designated laboratories will be responsible for internal control of QA/QC.

Further discussion on project responsibilities can be found in Section A.1.1 and A.1.2 of the PQAPP.

Section: A Revision Number: 0 Date: February 2012 Page 2 of 6

FIGURE A.1 START Region 3 Project Organization

---- = Communication
---- = Authority

Section: A Revision Number: 0 Date: February 2012 Page 3 of 6

A.2 Problem Definition/Background

The Dimock Residential Groundwater Site (site) is located in the rural community of Dimock Township in northeastern Pennsylvania (pop. 1,497 – 2010 Census). Since 2009, the site has received widespread publicity beginning with reports of methane migration into local domestic water supplies following Marcellus Shale drilling operations in the area. Groundwater sampling activities have also identified the presence of other organic and inorganic contaminants in the private-use wells which may potentially be associated with nonconventional deep shale drilling activities. The origin of the contaminants has not been fully determined.

Privately owned wells constitute the primary source of drinking water for residents in the area. Drilling and production activities involving deep shale gas extraction is prevalent throughout Susquehanna County.

The site includes affected and potentially affected media, namely ground water and surface waters, in the rural area surrounding the intersection of State Route 29 and County Route 2024 in Dimock Township. The coordinates for this location are 41.746411 north latitude, 75.898498 west longitude. Surface waters in the area enter tributaries of Burdick Creek located east/southeast from the site. Burdick Creek flows to Meshoppen Creek also located east/southeast from the site. Meshoppen Creek flows southwest and confluences the Susquehanna River at Meshoppen, PA. Surface water impoundments and/or ponds and lakes are observed in aerial photos to be present near the site. Topographic relief in the vicinity of the site is approximately 400 feet ranging from approximately 1,100 feet to 1,500 feet above mean sea level (amsl). The site is located within the glaciated low plateaus section of the Appalachian Plateaus Province. Surficial bedrock is comprised of the Devonian Catskill Formation having sandstone, siltstone, shale, mudstone and conglomerate lithology.

The Pennsylvania Ground Water Information System database (PAGWIS) identifies 44 ground water withdrawal wells within a 2-mile radius of the site, although more wells are likely to be present. Most of the wells recorded in the PAGWIS are used for domestic purposes. Depths of 19 of these wells are recorded ranging from 125 to 700 feet deep with a median depth of about 250 feet. Yields from 42 of the wells are recorded as ranging from 1-50 gallons per minute (gpm) with a median yield of 13.7 gpm.

A.3 Project/Task Description

On December 19^{th,} 2011, EPA Region III OSC Richard Fetzer tasked TechLaw START to perform a removal site evaluation at the site, located at or near Pennsylvania (PA) Route 29 in Dimock, Susquehanna County, Pennsylvania. The purpose of the assessment is to provide information to EPA to assist in determining if residential home wells have been impacted by

Section: A Revision Number: 0 Date: February 2012 Page 4 of 6

nearby gas well installation and development activities. Sampling activities will include the collection of residential home well groundwater samples. Additionally, surface water samples may be collected if directed by EPA. These sampling activities will be conducted under Technical Direction Document (TDD) No. TL01-11-12-001, START Contract No. EP-S3-10-04.

The objective of the sampling activity is to assess the presence and origin of substances that may present a threat to the health of persons ingesting, contacting or engaging in typical residential or recreational uses of groundwater or surface water. The analytical methods selected are based in part on contaminants that may be present due to the natural gas exploration, drilling or hydraulic fracturing activities located in the region.

A.4 Quality Objectives and Criteria

The purpose of this QAPP is to ensure that the data generated from this sampling event meet the criteria established by EPA Region 3 for precision, accuracy, representativeness, completeness, and comparability (PARCC). The reliability of the analytical data generated depends on the representativeness of the samples collected, the accuracy and completeness of the documentation and record keeping, and the validity and reproducibility of the analytical methods used. Use of accepted EPA methods and sound scientific and engineering principles assure consistent, reliable products that result in a high degree of user satisfaction. The procedures reflected in this QAPP are consistent with EPA accepted methods and other relevant technical standards. TechLaw procedures have been established to assure that the resulting analytical data are defensible legally as well as technically.

A.4.1 Data Quality Objectives

DQOs are qualitative and quantitative statements which specify the quality of the data required to support decisions made during sampling and analysis activities and are based on the end uses of the data to be collected. The following steps are taken in order to determine the appropriate data quality level.

Step 1: State the problem:

Degradation of drinking water and surface water quality from contamination claimed to be associated with Marcellus shale drilling and hydraulic fracturing (a.k.a. fracking) operations has been reported by local private well owners. Privately owned wells constitute the primary source of drinking water for residents in the area.

Step 2: Identify the decision

The decision to be made is to determine whether water samples have been contaminated, and if so, to document the origin of contamination.

Section: A Revision Number: 0 Date: February 2012 Page 5 of 6

Step 3: Identify the input to the decision

Approximately forty to sixty residential home well samples will be collected in the vicinity of Dimock Township. Tap water samples will be collected at homes where access has been granted to EPA officials by property owners. Additionally, it is anticipated that as many as twelve surface water samples may be collected from nearby water bodies.

Step 4: Define the study boundaries

Water samples will be collected within the vicinity of Dimock Township, Susquehanna County, Pennsylvania.

Step 5: Develop a decision rule

Samples will be collected to determine the presence and origin of contamination. The resulting analytical data will be provided to EPA. If contaminants are present above the laboratory method detection limit (MDL), further assessment of the data will be performed by EPA.

Step 6: Specify tolerable limits on decision errors

The data quality objectives are designed to generate data of known quality that meet project needs. Correct sampling and analysis techniques must be followed and resulting data scrutinized. The analytical results from the sampling event are evaluated with respect to the laboratory (Matrix Spike/Matrix Spike Duplicate [MS/MSD], LCS [Laboratory Control Sample], laboratory blanks) and field quality control (QC) samples (i.e., field duplicates, field blanks, equipment blanks, and trip blanks).

Step 7: Optimize the design

Sample locations, as discussed in Step 2, were specified by EPA. Samples will be collected from residential wellheads, residential tap water, and surface water.

A.4.2 Measurement Performance Criteria

Analytical measurements conducted by the designated laboratories are performed in accordance with the quality assurance (QA) procedures detailed in the various methodologies. Laboratory specific information, such as SOPs, QA/QC limits, etc. for the methods to be employed are available upon request.

Further discussion on measurement performance criteria, and PARCC, can be found in the PQAPP.

Section: A Revision Number: 0 Date: February 2012 Page 6 of 6

A.4.3 Decision Rules

A Decision Rule is a statement which allows for a course of action or non-action to be taken, based on assumptions made to draw out and test its logical or empirical consequences.

For the sampling at the Dimock Residential Groundwater Site, samples will be collected to determine the presence and origin of contamination.

A.5 Special Training/Certification

Section A.5 of the PQAPP discusses general training requirements and documentation. Additionally, TechLaw field staff will be required to have attended ICS 100/200 training.

A.6 Documents and Records

Documentation requirements are discussed in Section A.6 of the PQAPP. Project specifics are discussed in Section 8.2 of the Sampling QA/QC Work Plan.

The deliverables to be produced under this project are discussed in Section 10.0 of the Sampling QA/QC Work Plan.

Section: B Revision Number: 0 Date: February 2012 Page 1 of 4

B. DATA GENERATION AND ACQUISITION

The following sections describe the sampling and analysis procedures that will be used to during the investigation.

B.1 Sampling Process Design (Experimental Design)

Residential well samples will be collected in accordance with the EPA Environmental Response Team (ERT) Standard Operating Procedure (SOP) No. 2007 (ERT, 1995). Samples are anticipated to be collected from a valve closest to the well head (wellhead sample) and from the kitchen faucet (tap sample) within each home. Inspection of the water system may be required to identify the appropriate valve sampling location and to determine if it is downstream or upstream of any treatment apparatus. The water samples will be collected simultaneously from the valve closest to the wellhead and the kitchen faucet, after purging procedures are completed and water quality parameters are stabilized as described in Section 7.0 of the Sampling QA/QC Work Plan.

Surface water samples may be collected from locations near the site. The surface water samples will be collected in accordance with ERT SOP No. 2013, utilizing the direct method (ERT, 1994). Surface water sample media will be collected directly into laboratory certified pre-cleaned sample bottles as specified in Table 2 of the Sampling QA/QC Work Plan. All samples will be placed on ice after collection. The analyses to be conducted, as well as the number of samples to be collected, are summarized in Table 1 of the Sampling QA/QC Work Plan.

B.2 Sampling Methods

Methods for collecting residential well samples are discussed in Section 7.1 of the Sampling QA/QC Work Plan. Sampling of surface water is discussed in Section 7.2 of the Sampling QA/QC Work Plan.

B.3 Sampling Handling and Custody

Sample handing and custody procedures are discussed in Section B.3 of the PQAPP as well as Sections 8.2.2, 8.2.3, 8.2.4 and 8.3 of the Sampling QA/QC Work Plan. Site specific sample identification requirements are discussed in Section 7.3 of the Sampling QA/QC Work Plan.

B.4 Analytical Methods

The parameters to be analyzed were specified by EPA.

Section: B Revision Number: 0 Date: February 2012 Page 2 of 4

Table 1 of the Sampling QA/QC Work Plan summarizes the analytical methods and analyses that each laboratory will perform for this investigation. Copies of all TechLaw subcontract laboratory SOPs, laboratory Quality Assurance Plans, reporting limits, method detection limits, and QC acceptance criteria are available upon request.

B.5 Quality Control

QC samples will be collected in the field to assure that measurement objectives are met for laboratory analyses. Field QC samples will consist of one field duplicate for every ten field samples, or one per matrix if fewer than ten are collected. Duplicate samples will be documented in the Field Activities Logbook and on the Traffic Report (TR)/COC. The field duplicate will test the reproducibility of sampling procedures and analytical procedures.

A trip blank will be collected and included in all coolers shipped that contain samples for VOC, Gasoline Range Organics (GRO), and dissolved gas analyses.

A field blank will be collected to ensure the cleanliness of sample containers and to ensure that no cross-contamination has occurred during sample collection, preservation, and shipment, as well as in the laboratory.

An equipment blank will also be collected for any new piece of sampling equipment to be used, on a one-time basis.

Laboratory QC will be performed at the frequencies established in their SOPs. Laboratory, and/or method specified QC limits where applicable, will be used to evaluate the QC results. Corrective action for QC outliers will be handled as per the laboratory QA Plans and applicable SOPs.

Further information on QC can be found in Section B.5 of the PQAPP.

B.6 Instrument/Equipment Testing, Inspection and Maintenance

Section B.6.1 of the PQAPP, and the referenced field SOPs discuss instrument testing, inspection, and maintenance of field instruments/equipment. Dedicated, disposable sampling equipment will be used by TechLaw whenever possible.

Section B.6.2 of the PQAPP presents a general discussion of the testing, inspection and maintenance requirements for laboratory equipment. Laboratory specific procedures are presented in the laboratory SOP and/or QA Plans.

Section: B Revision Number: 0 Date: February 2012 Page 3 of 4

B.7 Instrument/Equipment Calibration and Frequency

Section B.7 of the PQAPP, and the referenced field SOPs discuss general instrument calibration requirements. Laboratory specific procedures are presented in the laboratory SOP and/or QA Plans.

The following equipment will be utilized during sample collection activities and will be calibrated per the manufacturer's instructions:

- YSI 556 MPS water quality meter or equivalent that is equipped with data logging capability and flow-through cell
 - o Calibration Schedule:
 - Daily-DO calibration
 - Weekly -pH
 - Monthly -Specific Conductivity and ORP
- HACH 2100Q portable turbidimeter (or equivalent instrument)
 - o Calibration Schedule:
 - Daily
- MultiRae Plus
 - Calibration Schedule:
 - Daily Field Verification
 - Weekly 5 Sensor Calibration

The following equipment do not require calibration but will be inspected daily prior to use:

- Trimble ProXH or equivalent Global Positioning System (GPS) unit
- HACH titrator (HACH method 8203, equivalent to Standard Method 23208 for alkalinity)
- HACH DR890 spectrometer (HACH method 8146, equivalent to Standard Method 3500-Fe B for wastewater for ferrous iron; HACH method 8131, equivalent to Standard Method 4500-S2-D for wastewater dissolved sulfide)
- Peristaltic Pump

B.8 Inspection/Acceptance of Supplies and Consumables

See Section B.8 of the PQAPP for this information.

B.9 Non-direct Measurements

Prior to any field activities, all written and electronic data and information regarding hazardous characteristics of potential constituents present on-site are retrieved from literature sources. This information will be available to the TechLaw Field Team members prior to sampling activities. This data will provide information on the level of protection needed by the Field Team during field operations. This determination will be made by the site Health and Safety Officer and recorded in the site-specific Health and Safety Plan (HASP).

Section: B Revision Number: 0 Date: February 2012 Page 4 of 4

B.10 Data Management

Section B.10 of the PQAPP presents a discussion of the data management requirements.

Additionally, TechLaw will perform the following data management activities:

- Field data (e.g., field logbooks, groundwater sampling record sheets, internal chain-of-custody forms, etc.) will be retained in the project files and maintained on site for the duration of sampling activities. These records will be scanned and backed up to an external hard drive on a regular basis.
- A hard copy site sample log will be maintained on site and updated on a daily basis. The site sample log will be used to track how many residential homes have been sampled, laboratory and field QC samples collected, as well as pertinent sample collection information (i.e., sample ID, date and time of collection, and field sampler). The site sample log will also be maintained electronically in an Excel file which will be used to track frequency of QC samples collected. The electronic site sample log will also be used to isolate samples by date, etc. to determine the site samples that are associated with respective field QC samples.
- Electronic files containing pertinent information (e.g., SCRIBE database) will be backed up on a daily basis to an external hard drive.
- Digital photographs will be downloaded and saved to an external hard drive on a regular basis.
- GPS data and data-logged water quality parameters from the YSI will be downloaded and saved to an external hard drive on a regular basis.
- TechLaw will receive an electronic Level IV (CLP-equivalent) analytical data package, as well as an electronic data deliverable (EDD), from all Tier IV laboratories. EPA will be carbon copied on the email exchange providing the final analytical reports. Upon receipt, EPA will forward the analytical data to the Region 3 ESAT contractor for data validation.
- It is anticipated that analytical data from the EPA laboratories will be emailed to the EPA Region 3 WAM and OSC. TechLaw will maintain transmitted analytical results in the electronic project files kept on an external hard drive.
- TechLaw has requested EDDs containing validated data. Once received from EPA, TechLaw will upload the validated EDDs into the SCRIBE database.

Section: C Revision Number: 0 Date: February 2012 Page 1 of 1

C. ASSESSMENT AND OVERSIGHT

Section C of the PQAPP presents a discussion of assessments, oversight, responses and corrective action.

C.1 Assessments and Response Actions

No formal internal field audits are planned for the Dimock Residential Groundwater Site sampling event. If a field audit is determined to be necessary (e.g., deviations from this QAPP, the PQAPP, and/or the Sampling QA/QC Work Plan are encountered), or if EPA requests that an audit be performed, TechLaw will follow the procedures outlined in Section C.1.1 of the PQAPP.

The TechLaw Site Lead is responsible for ensuring compliance with all project provisions presented in the QAPP.

System assessments of the designated subcontract laboratories are performed by TechLaw. The procedures for laboratory assessments are discussed in Section C.1.2 of the PQAPP.

If corrective action is found to be necessary after an audit, TechLaw will follow the procedures discussed in Section C.1.3 of the PQAPP.

C.2 Reports to Management

If an audit is performed, an audit report and all necessary corrective actions will be provided to TechLaw management as well as to the EPA personnel copied on this QAPP. See Section C.2 of the POAPP for additional details on OA reports to management.

Additionally, if directed by EPA, TechLaw will provide a Trip Report describing sampling activities and analytical results to EPA for this project.

Section: D Revision Number: 0 Date: February 2012

Page 1 of 1

D. DATA VALIDATION AND USABILITY

TechLaw will verify data packages from subcontracted laboratories are complete as per the LAT procedures. Details on data verification can be found in Section D of the PQAPP.

Analytical data generated by the EPA OASQA laboratory will be reviewed and validated in accordance with OASQA standard procedures. Other analytical data for organic analyses generated under this Sampling QA/QC Work Plan will be evaluated in accordance with EPA Region III Modifications to National Functional Guidelines for Organic Data Review Multi-Media, Multi-Concentration (OLMO1.0-OLMO1.9) (September 1994) to Data Validation Level M2, and in accordance with EPA Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (April 1993) at the IM2 Level. Validation for the analytical services subcontract arranged through TechLaw will be requested through the EPA ESAT contractor.

Data assessment and reconciliation with user requirements is discussed in Section D.3 of the PQAPP. TechLaw has not been tasked to perform data assessment or evaluation of data usability at this time.

QUALITY ASSURANCE PROJECT PLAN DIMOCK RESDIENTIAL GROUNDWATER SITE REVISION 0 February 2012

APPENDIX A

EXAMPLE CHAIN-OF-CUSTODY FORM, SAMPLE IDENTIFICATION LABEL AND CUSTODY SEALS

Page 1 of 1

USEPA CLP Generic COC (REGION COPY)

DateShipped: 2/3/2012 CarrierName: FedEx AirbillNo: 7980 1991 1410

CHAIN OF CUSTODY RECORD

Dimock Residential Groundwater/WV Case #: CT5865 No: 3-020312-104557-0094

Lab: NAREL

Lab Contact: Lab Phone: 334.270.3400

Sample #	Matrix/Sampler	Coll. Method	Analysis/Turnaround	Tag/Preservative/Bottles	Station Location	Collected	Sample Type
HW40	Drinking Water/	Grab	AlphaSp_Th(7), AlphaSp_U(7), GammaSpec(7), GammaSpec(7), GammaSpec(7), AL_BETA(7), Ra-226(7), Ra-228(7)	2962 (HNO3 / 1000mlHDPE), 2963 (HNO3 / 1000mlHDPE), 2964 (HNO3 / 1000mlHDPE), 2965 (HNO3 / 1000mlHDPE), 2966 (HNO3 / 1000mlHDPE), 2967 (HNO3 / 1000mlHDPE), 2968 (HNO3 / 1000mlHDPE), 2969 (HNO3 / 1000mlHDPE),	HW40	02/02/2012 15:39	Field Sample
HW40-P	Drinking Water/	Grab	AlphaSp_Th(7), AlphaSp_U(7), GammaSpec(7), GammaSpec(7), GammaSpec(7), AL_BETA(7), Ra-226(7), Ra-228(7)	2998 (HNO3 / 1000mlHDPE), 2999 (HNO3 / 1000mlHDPE), 3000 (HNO3 / 1000mlHDPE), 3001 (HNO3 / 1000mlHDPE), 3002 (HNO3 / 1000mlHDPE), 3003 (HNO3 / 1000mlHDPE), 3004 (HNO3 / 1000mlHDPE), 3005 (HNO3 / 1000mlHDPE),	HW40	02/02/2012 15:44	Field Sample

	Shipment for Case Complete? N
Special Instructions:	Samples Transferred From Chain of Custody #
Analysis Key: AlphaSp_Th=10-Alpha Spec, Thorium, AlphaSp_U=10-Alpha Spec, Uranium, GammaSpec=10-Gamma Spec, AL_228=10-Ra-228	BETA=10-Gross Alpha/Beta, Ra-226=10-Ra-226, Ra-

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
16		2/2/10							Manager - Sept.		
10		1-/14	-							12 64	
					1					1	1
											1111

EXAMPLE SAMPLE IDENTIFICATION LABEL

Sample: HW41-P Case: CT5865 Station Location: HW41

Date: 2/2/2012 Time:15:54 Grab Preservation: H2SO4 / 500mIHDPE

Analyses: 07-Phosphorous_NO3-,NO2-,Tot-N MS/MSD: N

Sampler: Tag: 3066

EXAMPLE CUSTODY SEALS

Signature	MATTER PROTECTION	O UNITED STATES	CUSTODY SEAL
		4GENC	Date
CUSTODY SEAL	WILED STARS	THAT PROTECTION	Signature

QUALITY ASSURANCE PROJECT PLAN DIMOCK RESDIENTIAL GROUNDWATER SITE REVISION 0 February 2012

APPENDIX B

STANDARD OPERATING PROCEDURES

Standard Operating Procedures List

SOP Number	Environmental Response Team SOP Title
2007	Groundwater Well Sampling
2013	Surface Water Sampling
2139	Multi Gas Monitor PGM-50/Photoionization Detector (PID) MultiRae Plus

SOP Number	TechLaw SOP Title
02 05 03	Field Procedures-Chain-of-Custody
03 01 04	Field Documentation Procedures-Maintenance of a Field Logbook
03 02 04	Field Documentation Procedures-Taking and Documenting Photographs
04 02 02	Packaging and Shipping Procedures-Environmental Samples

Scientific Engineering Response and Analytical Corrices SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 1 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

CONTENTS

1.0	SCOPE	AND	APPI	ICATION*
1.0	DOOLE	AND	ΔIII	MALION

- 2.0 METHOD SUMMARY*
- 3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE*
- 4.0 INTERFERENCES AND POTENTIAL PROBLEMS*
 - 4.1 Well Purging*
 - 4.2 Sampling Equipment*
 - 4.3 Light Non-Aqueous Phase Liquids (LNAPL)*
- 5.0 EQUIPMENT/APPARATUS*
 - 5.1 Bailers*
 - 5.2 Submersible Pumps*
 - 5.3 Non-Contact Gas Bladder Pumps*
 - 5.4 Suction Pumps*
 - 5.5 Inertia Pumps*
 - 5.6 Field Equipment Checklist*
 - 5.6.1 General*
 - 5.6.2 Bailers*
 - 5.6.3 Submersible Pumps*
 - 5.6.4 Non-Contact Gas Bladder Pumps*
 - 5.6.5 Suction Pumps*
 - 5.6.6 Inertia Pumps*
 - 5.6.7 Peristaltic Pumps*
- 6.0 REAGENTS*
- 7.0 PROCEDURES*
 - 7.1 Preparation*
 - 7.2 Field Preparation*
 - 7.3 Purging*
 - 7.3.1 Bailers*
 - 7.3.2 Submersible Pumps*
 - 7.3.3 Non-Contact Gas Bladder Pumps*
 - 7.3.4 Suction Pumps*
 - 7.3.5 Inertia Pumps*

STANDARD OPERATING PROCEDURES

 SOP:
 2007

 PAGE:
 2 of 21

 REV:
 0.0

 DATE:
 4/16/01

GROUNDWATER WELL SAMPLING

CONTENTS (cont)

	7.4 7.5 7.6	Sampling* 7.4.1 Bailers* 7.4.2 Submersible Pumps* 7.4.3 Non-Contact Gas Bladder Pumps 7.4.4 Suction Pumps* 7.4.5 Inertia Pumps* Filtering* Special Considerations for VOA Sampling
8.0	CALC	ULATIONS*
9.0	QUAL	ITY ASSURANCE/QUALITY CONTROL
10.0	DATA	VALIDATION
11.0	HEAL	TH AND SAFETY
12.0	REFE	RENCES*
13.0	APPEN	NDICES

SUPERSEDES: SOP #2007; Revision: 0.0; 1/26/95; U.S. EPA Contract EP-W-09-031.

^{*} These sections affected by Revision 0.0.

Scientific Engineering Response and Analytical Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 3 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

1.0 SCOPE AND APPLICATION

This standard operating procedure (SOP) provides general information on sampling groundwater wells and ensures that the sample is representative of the particular groundwater zone being sampled. The growing concern over the past several years with respect to low levels of volatile organic compounds (VOCs) in water supplies has led to the development of highly sophisticated analytical methods that can provide detection limits at part per trillion levels. While the laboratory methods are extremely sensitive, well controlled and quality assured, they cannot compensate for a poorly collected sample. The collection of a sample should be as sensitive, highly developed and quality assured as the analytical procedures.

The procedures are designed for sampling the most common types of groundwater contaminants (e.g., volatile and semivolatile organic compounds, pesticides, herbicides, polychlorinated biphenyls (PCBs), metals, and biological parameters).

These are standard (i.e., typically applicable) operating procedures which may be varied or changed as required, dependent upon site conditions, or equipment limitations and limitations imposed by the procedure. In all instances, the ultimate procedures employed should be documented and associated with the final report.

Mention of trade names or commercial products does not constitute United States Environmental Protection Agency (U.S. EPA) endorsement or recommendation for use.

2.0 METHOD SUMMARY

In order to obtain a representative groundwater sample for chemical analysis (es), it is important to remove stagnant water from the well casing and the water immediately adjacent to the well before collection of the sample. This may be achieved with one of a number of sampling devices. The most common of these devices are the bailer, submersible pump, non-contact gas bladder pump, inertia pump and suction pump. At a minimum, three well volumes should be purged, if possible. Equipment must be decontaminated prior to use and between wells. Once purging is completed and the proper sample containers have been prepared, sampling may proceed. Samples should be collected from the depth interval where contaminants are expected but need not be collected with the same device used for well purging. However, some sampling methods will affect sample integrity and care should be taken when choosing the sampling device. If possible, sampling should occur progressively from the least to the most contaminated well.

3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE

The sample analysis determines the type of bottle, preservative, holding time, and filtering requirements. Samples should be collected directly from the sampling device into appropriate sample containers. Check that a Teflon liner is present in the cap of the sample container, if required. Attach a sample identification label. Complete a field data sheet, a chain of custody form, and record all pertinent data in the site logbook.

Samples should be placed in a cooler and maintained at 4°C and ideally should be shipped within 24 hours of sample collection. If large numbers of samples are being collected, shipments may occur on a regular

Scientific Engineering Response and Analytical Corrices SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 4 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

basis after consultation with the analytical laboratory. In all cases, samples should be shipped well before the holding time expires.

Due to the trace levels at which volatile organics are detectable, cross contamination and introduction of contaminants must be avoided. Treatment of the sample with sodium thiosulfate preservative is required only if there is residual chlorine in the water that could cause free radical chlorination and change the identity of the original contaminants. This preservative should not be used if there is no chlorine in the water. Quality assurance/quality control (QA/QC) samples are incorporated into the shipment package to provide a check against cross contamination. Samples for the analysis of volatiles, semivolatiles, pesticides, herbicides and PCBs do not normally require preservation. Groundwater samples for metal analyses should be adjusted with nitric acid to a pH of less than 2. Refer to SERAS SOP# 2003, Sample Storage, Preservation and Handling.

4.0 INTERFERENCES AND POTENTIAL PROBLEMS

The primary goal of well sampling is to obtain a representative sample of the groundwater. Analysis can be compromised by: (1) taking an unrepresentative sample, or (2) by incorrect handling of the sample. To avoid introducing foreign contaminants into a sample, strict sampling procedures should be followed.

4.1 Well Purging

In a non-pumping well, there will be little or no vertical mixing of the water and stratification will occur. The well water above the screened section will remain isolated and may lack the contaminants representative of the ground water. To avoid collecting unrepresentative water, all monitor wells should be purged of three to five volumes of water prior to sampling. When purging with a submersible pump, the pump intake may be set within the screened interval if evaluation of the well construction, pumping rate, and aquifer characteristics ensures that formation material will not be drawn into the well. Otherwise, the pump should be set just above the top of the screen. Bailers, peristaltic pumps, and miniature submersible pumps can also be used for purging, depending on well depth, groundwater level, and well yield. During purging, the temperature, pH, turbidity, and specific conductivity of the groundwater should be monitored at regular intervals and recorded in the site field logbook. The frequency of monitoring will depend on the purge rate but measurements are generally collected every 5 to 15 minutes. Purging is generally considered complete when these parameters stabilize. Depending on the formation characteristics and the degree of previous development, turbidity may also be a problem. Purging may have to be continued until the turbidity reaches an acceptable level, generally less than 50 nephelometric turbidity units (NTUs).

4.2 Sampling Equipment

The tendency of organics to adsorb or desorb onto or out of many materials makes the selection of sampling materials critical for trace organics analyses. Construction materials for samplers and purging equipment (bladders, pump, bailers, and tubing) should be limited to stainless steel, polytetrafluoroethylene (Teflon), and glass in areas where concentrations are expected to be at or near the detection limit. The use of plastics, such as polyvinyl chloride (PVC) or polyethylene, should be avoided when analyzing for organics. However, PVC may be used for evacuation

Scientific Engineering Response and Analytical Corrices SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 5 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

equipment as it will not normally come into contact with the sample. Rinsate blanks may be required to check the effectiveness of decontamination procedures when using non-dedicated equipment. In highly contaminated wells, disposable equipment (i.e., polypropylene bailers) may be appropriate to avoid cross-contamination.

4.3 Light Non-Aqueous Phase Liquids (LNAPL)

The presence of floating organic layers in a well may require reevaluation of the sampling plan. There is generally little point in sampling the groundwater directly beneath an organic layer and the presence of both phases complicates the sampling procedure. The organic phase is usually sampled by skimming the top of the liquid column in the well with a bailer or small pump, depending on the viscosity of the liquid.

5.0 EQUIPMENT/APPARATUS

5.1 Bailers

Advantages

- No power source needed
- Portable
- Inexpensive, so it can be dedicated and hung in a well, thereby reducing the chances of cross contamination
- Minimal outgassing of volatile organics while sample is in bailer
- Readily available
- Removes stagnant water first
- Rapid, simple method for removing small volumes of purge water

Disadvantages

- Time-consuming to flush a large well
- Transfer of sample may cause aeration
- The valve at the bottom of the bailer often leaks thus losing some of the sample

5.2 Submersible Pumps

Advantages

- Smaller diameter pumps are usually portable and can be transported from well to well
- Relatively high pumping rates are possible
- · Generally very reliable and does not require priming

Disadvantages

Potential for effects on analysis of trace organics

Scientific Engineering Response and Analytical Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 6 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

- Deep wells may require pumps that are heavy and cumbersome to use
- Expensive
- Power source needed
- Sediment in water may clog intake screen or impellers
- Must be decontaminated between wells

5.3 Non-Contact Gas Bladder Pumps

Advantages

- Maintains integrity of sample
- Easy to use
- Can sample from discrete locations within the monitor well

Disadvantages

- Difficulty in cleaning, although dedicated tubing and bladder may be used
- Only useful to a depth of about 100 feet
- Requires a supply of gas or an air compressor for operation, gas bottles or compressors are often difficult to obtain and are cumbersome
- Relatively low pumping rates

5.4 Suction Pumps (including peristaltic pumps)

Advantages

- · Portable, inexpensive, and readily available
- Operates from either 110 VAC or 12 VDC
- · Variable flow rate, easily controlled

Disadvantages

- Restricted to wells where water levels are within 20 to 25 feet of the ground surface
- Vacuum can cause loss of dissolved gasses and volatile organics
- Some types must be primed and vacuum is often difficult to maintain during initial stages of pumping
- Generally suitable for only small diameter shallow wells; maximum flow rate of some types (e.g. peristaltic pumps) limited to approximately one gallon per minute (gpm)

5.5 Inertia Pumps

Advantages

- Portable, inexpensive, and readily available
- Offers a rapid method for purging relatively shallow wells

Scientific Engineering Response and Analysis Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 7 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

Disadvantages

- Restricted to areas with water levels within 70 feet of the ground surface
- May be time consuming to purge wells with these manual pumps
- Labor intensive
- WaTerra pumps (for example) are only effective in 2-inch diameter wells

5.6 Field Equipment Checklist

5.6.1 General

- Water level indicator
- electric sounder
- steel tape
- transducer
- reflection sounder
- airline
- Depth sounder
- · Appropriate keys for well cap locks
- Steel brush
- HNU or OVA (whichever is most appropriate)
- Logbook (bound)
- Calculator
- Field data sheets and samples labels
- · Chain of custody records and seals
- Sample containers
- Engineer's rule
- Sharp knife (locking blade)
- Tool box (to include at least: screwdrivers, pliers, hacksaw, hammer, flashlight
- Leather work gloves
- Surgical gloves (for sampling)
- Appropriate Health & Safety gear
- Five-gallon pail
- · Plastic sheeting
- Shipping containers
- · Packing materials
- Bolt cutters
- Ziploc plastic bags
- · Containers for evacuation liquids
- Decontamination solutions
- Tap water
- Non phosphate soap
- Pails or tubs

Scientific Engineering Response and Anapphal Cerrices SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 8 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

- Aluminum foil
- Garden sprayer
- Preservatives
- Distilled or deionized water
- Fire extinguisher (if using a generator as a power source)
- In-line filters, 0.45 microns (μm)
- pH meter, temperature meter specific conductivity meter, turbidity meter
- Indelible markers
- Duct tape
- Paper towel
- · First aid kit

5.6.2 Bailers

- Clean, decontaminated bailers of appropriate size and construction material
- Unused nylon line, enough to dedicate to each well
- · Teflon coated bailer wire
- · Sharp knife
- Aluminum foil (to wrap clean bailers)
- Five gallon bucket

5.6.3 Submersible Pumps

- Pump(s)
- Generator (120, or 240 volts) or 12 volt power source, depending on pump
- Extension cords
- PVC coil tubing, diameter suitable for flow requirements
- Hose clamps
- Safety cable
- Tool box
- pipe wrenches
- wire strippers
- electrical tape
- heat shrink wrap or tubing
- hose connectors
- Teflon tape
- Winch, pulley or hoist for large submersible pumps (4-inch diameter or greater)
- Gasoline container, gasoline
- Flow meter and gate valve
- Plumbing components (nipples, reducers, plastic pipe connectors)
- Control box (if necessary)

5.6.4 Non-Contact Gas Bladder Pumps

Sentific Engineering Resource and Analytical General SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 9 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

- Non-contact gas bladder pump
- Compressor or nitrogen gas tank
- Batteries and charger
- Teflon tubing enough to dedicate to each well
- Swagelock fitting
- Toolbox supplements same as submersible pump
- Control box (if necessary)

5.6.5 Suction Pumps

- Pump
- Black PVC coil tubing enough to dedicate to each well
- Gasoline if required
- Toolbox
- Plumbing fittings
- Flow meter with gate valve

5.6.6 Inertia Pumps

- Pump assembly (WaTerra pump, piston pump)
- Five gallon bucket

5.6.7 Peristaltic Pumps

- Small diameter "Geotubing"
- Roll of Masterflex tubing
- 110 VAC generator or 12 VDC power source
- Knife, screwdriver

6.0 REAGENTS

Reagents may be used for preservation of samples and for decontamination of sampling equipment. The preservatives required are specified by the analysis to be performed and are summarized in Environmental Response Team/Scientific, Engineering, Response and Analytical Services (ERT/SERAS) SOP #2003, Sample Storage, Preservation, and Handling. Decontamination solutions are specified in ERT/SERAS SOP #2006, Sampling Equipment Decontamination.

7.0 PROCEDURES

7.1 Preparation

1. Determine the extent of the sampling effort, the sampling methods to be employed, and the types and amounts of equipment and supplies needed (i.e., diameter and depth of wells to be sampled).

Sensific Engineering Resource and Analytical Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 10 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

- 2. Obtain necessary sampling and monitoring equipment, appropriate to the type of contaminant being investigated. For collection of volatile organic samples, refer to the work plan to ensure that sufficient 40 milliliter (mL) glass sample vials with Teflon lined septa are available. Check availability of preservatives, packing material, sample labels, and coolers. Trip blanks are incorporated into the shipment package to provide a check against cross contamination.
- 3. Decontaminate or pre-clean equipment and ensure that it is in working order.
- 4. Perform a general site survey prior to site entry in accordance with the site specific Health and Safety Plan.
- 5. Identify all sampling locations.

7.2 Field Preparation

- 1. Start at the least contaminated well, if known.
- 2. Lay plastic sheeting around the well to minimize likelihood of equipment contamination from the soil adjacent to the well.
- 3. Remove locking well cap, note location, time of day, and date in field notebook or appropriate log form.
- 4. Remove well casing cap.
- 5. Immediately screen headspace of well with an appropriate air monitoring instrument to determine the presence of volatile organic compounds and record flame ionization detector (FID) or photoionization detector (PID) readings in site logbook.
- 6. Measure distance from water surface to a reference measuring point and record in site logbook. A reference point may be the top of outer protective casing, the top of riser pipe, the ground surface, or the top of a concrete pad. If floating organics are present, the water level and depth to floating product can be measured with an oil/water interface probe. However, the presence of floating organics will indicate the need to reevaluate the validity of groundwater sampling.
- 7. Measure total depth of well and record in site logbook or on field data sheet.
- 8. Calculate the volume of water in the well and the volume to be purged using the calculations in Section 8.0.
- 9. Select the appropriate purging and sampling equipment.

7.3 Purging

SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 11 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

The amount of purging required before sampling depends on the intent of the monitoring program as well as the hydrogeologic conditions. General assessment of groundwater quality may require long pumping periods to obtain a sample representative of a large volume of the aquifer. The purge volume is determined prior to sampling and the sample is collected after a known volume of the water is pumped from the well, or the well can be pumped until parameters such as temperature, specific conductivity, pH, or turbidity have stabilized. Groundwater quality in the well is considered stabilized after three sets of consecutive readings indicate no change. The time between readings is based on the purge rate and cumulative volume but generally is between 5 to 15 minutes.

Sampling to define a contaminant plume requires a representative sample from a small volume of the aquifer. This requires that the well be purged enough to remove the stagnant water but not enough to induce flow from other areas. Generally, three well volumes are considered sufficient. The total volume purged, purge method, purge rate, and the start and end times of purging are recorded in the field log book.

The following purging devices are most commonly used. Other evacuation devices are available, but have been omitted in this discussion due to their limited use.

7.3.1 Bailers

Bailers are the simplest purging device and generally consist of a rigid length of tube, usually with a ball check-valve at the bottom. A nylon line is used to tie and lower the bailer into the well and retrieve a volume of water. The three most common types of bailers are made of PVC, Teflon, and stainless steel. Purging with bailers is best suited to shallow or small diameter wells. For deep, larger diameter wells that require removal of large volumes of water, pumps may be more appropriate.

Equipment needed will, include a clean decontaminated bailer, Teflon or nylon line, a sharp knife, and plastic sheeting.

- 1. Determine the volume of water to be purged as described in Section 8.0, *Calculations*.
- 2. Lay plastic sheeting around the well to prevent contamination of the bailer line with soil or other foreign materials. Do not let the bailer line touch the ground.
- Attach the line to the bailer and lower into the well until the bailer is completely submerged.
- 4. Pull bailer out ensuring that the line either falls onto a clean area of plastic sheeting or never touches the ground.
- 5. Empty the bailer into a container of known volume to determine when the purge volume is reached.

Scientific Engineering Response and Analytical Corrices SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 12 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

6. Dispose of purge waters as specified in the work plan.

7.3.2 Submersible Pumps

The use of submersible pumps for purging is permissible provided they are constructed of no contaminating materials. The chief drawback, however, is the difficulty in avoiding cross-contamination between wells. Some pumps can be easily disassembled for cleaning, but field decontamination may be difficult and require solvents that can affect sample analysis. The use of submersible pumps in multiple well-sampling programs, therefore, should be carefully considered against other sampling mechanisms (bailers, bladder pumps). In most cases, a sample can be collected by bailer after purging with a submersible pump; however, submersible pumps may be the only practical sampling device for extremely deep wells (greater than 300 feet of hydraulic head). Under those conditions, dedicated pump systems should be considered to eliminate the potential for cross-contamination of well samples.

Submersible pumps generally use either electric or compressed gas for power. Electric powered pumps can run off a 12 volt direct current (DC) rechargeable battery, or a 110 or 220 volt alternating current (AC) power supply. Gasoline used to power electrical generators is a potential source of contamination and should be kept well away from purging and sampling equipment. Those units powered by compressed air normally use a small electric or gas-powered air compressor. They may also use compressed gas (i.e., nitrogen) from bottles. Pumps are available for monitor wells of various depths and diameters.

The following steps describe the use of submersible pumps in purging a well:

- 1. Determine the volume of water to be purged as described in Section 8.0, *Calculations*.
- 2. Lay plastic sheeting around the well to prevent contamination of pumps, hoses or lines with soil or other foreign materials.
- 3. Assemble pump, hoses and safety cable, and lower the pump into the well. Make sure the pump is deep enough so as not to dewater the pump.
- 4. Attach flow meter to the outlet hose to measure the volume of water purged or measure with a container of known volume.
- 5. Use a ground fault circuit interrupter (GFCI) or ground the generator to avoid possible electric shock.
- 6. Attach power supply, and purge the well until the specified volume of water has been removed (or until field parameters, such as temperature, pH, conductivity, etc, have stabilized). Do not allow the pump to run dry. If the pumping rate exceeds the well recharge rate, reduce the pumping rate.

Scientific Engineering Response and Analysical Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 13 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

7. Collect and dispose of purge waters as specified in the work plan.

7.3.3 Non-Contact Gas Bladder Pumps

Pumps in this category may be dedicated to a well and include stainless steel and Teflon Middleburg-squeeze bladder pumps such as IEA, TIMCO, Well Wizard or Geolog.

- 1. Assemble Teflon tubing, pump and charged control box.
- 2. Procedure for purging with a bladder pump is the same as for a submersible pump (Section 7.3.2).
- 3. Adjust flow rate to prevent violent movement of the hose as water is drawn in.

7.3.4 Suction Pumps

Suction pumps include centrifugal, peristaltic and diaphragm. Diaphragm pumps can be used for relatively rapid purging and can be adjusted to a slower rate for sampling. The peristaltic pump is a low volume pump that uses rollers to squeeze the flexible tubing thereby creating suction. The tubing can be dedicated to a well to prevent cross-contamination. Peristaltic pumps, however, require a power source.

- 1. Assemble the pump, tubing, and power source if necessary.
- 2. Procedure for purging with a suction pump is exactly the same as for a submersible pump (Section 7.3.2).

7.3.5 Inertia Pumps

Inertia pumps such as the WaTerra pump and piston pump, are manually operated. These pumps are most appropriate to use when wells are too deep to bail by hand, too shallow or too small in diameter to warrant the use of a submersible pump. The pumps are made of plastic and may either be decontaminated or discarded after use.

- 1. Determine the volume of water to be purged as described in Section 8.0, *Calculations*.
- 2. Assemble pump and lower to the appropriate depth in the well.
- 3. Begin pumping manually, discharging water into a five-gallon bucket (or other graduated vessel). Purge until a specified volume of water has been evacuated (or until field parameters such as temperature, pH, and conductivity, have stabilized).
- 4. Collect and dispose of purge waters as specified in the work plan.

SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 14 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

7.4 Sampling

Before choosing a sampling device, the advantages or disadvantages of any one device, as outlined in Section 5, should be reviewed. It may be appropriate to use a different device to sample than that which was used to purge. The most common example of this is the use of a submersible pump to purge and a bailer to sample. Samples for volatile organics are collected first when sampling for more than one set of parameters, followed in order by samples for semivolatile organic and inorganic analyses.

7.4.1 Bailers

The positive-displacement sampling bailer is perhaps the most appropriate for collection of water samples for volatile analysis. Other bailer types (messenger, bottom fill, etc.) are less desirable, but may be mandated by well conditions and desired sample depth. A sample is obtained with a bailer using the following steps:

- 1. Surround the monitor well with clean plastic sheeting.
- 2. Attach a line to a clean decontaminated bailer. Do not let the line touch the ground.
- 3. Lower the bailer slowly into the well. Stop lowering when adjacent to the screen or at the desired sample depth
- 4. Allow bailer to fill and then slowly retrieve the bailer from the well.
- 5. Remove the cap from the sample container and place it on the plastic sheet or in a location where it will not become contaminated. For VOC sampling precautions, see Section 7.6.
- 6. Slowly pour the sample from the bailer into the sample container. Any necessary preservative should be added to the sample container before sampling.
- 7. Repeat steps 3, 4, and 6 as necessary to fill the sample container(s).
- 8. Cap the sample container tightly and place the prelabeled sample container in a carrier.
- 9. Replace the well cap.
- 10. Log the collection time, sampling method, and analyses required for all samples in the site logbook and on field data sheets.
- 11. Package samples and complete necessary paperwork.

7.4.2 Submersible Pumps

Scientific Engineering Response and Analytical Corrices SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 15 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

Submersible pumps are not recommended for sampling but may be used in some situations. The generator and fuel (if needed) used to operate a submersible pump can be a source of contamination and should be kept separate from the sampling containers during transport and downwind during sampling.

- Allow the monitor well to recharge after purging, keeping the pump just above the screened section.
- 2. Attach a clean gate valve to the discharge hose (if not already fitted), and reduce the flow of water to a manageable rate.
- 3. Assemble the appropriate bottles.
- 4. If a gate valve is not available, run the water down the side of a clean jar and fill the sample bottles from the jar.
- 5. Cap the sample container tightly and place the prelabeled sample container in a carrier.
- 6. Replace the well cap.
- 7. Log all samples in the site logbook and on the field data sheets and label all of the samples.
- 8. Package samples and complete the necessary paperwork.
- 9. Transport sample(s) to the decontamination zone for preparation for transport to the analytical laboratory.
- 10. Upon sampling completion, remove pump and assembly and fully decontaminate the equipment prior to setting it into the next sample well. When possible, dedicate the pump tubing to the well.

7.4.3 Non-Contact Gas Bladder Pumps

Non-contact gas positive displacement bladder pumps are often used when dedicated pumps are required. These pumps are also suitable for shallow (less than 100 feet) wells. They are somewhat difficult to clean, but may be used with dedicated sample tubing to avoid cleaning. These pumps require a power supply and a compressed gas supply (or compressor). They may be operated at variable flow and pressure rates making them ideal for both purging and sampling. Barcelona et al. (1984) and Nielsen and Yeates (1985) report that the non-contact gas positive displacement pumps cause the least amount of alteration in sample integrity as compared to other sample retrieval methods.

1. Allow the well to recharge after purging.

Scientific Engineering Response and Analytical Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 16 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

- 2. Assemble the appropriate bottles.
- 3. Turn the pump on, increase the cycle time and reduce the pressure to the minimum that will allow the sample to come to the surface.
- 4. Non-filtered samples shall be collected directly from the outlet tubing into the sample bottle.
- 5. For filtered samples, connect the pump outlet tubing directly to the filter unit. The pump pressure should be minimized so that the pressure build up on the filter does not blow out the pump bladder or displace the filter. For the Geotech barrel filter, no actual connections are necessary.
- 6. Cap the sample container tightly and place the prelabeled sample container in a carrier.
- 7. Replace the well cap.
- 8. Log all samples in the site logbook and on the field data sheets, and label all samples.
- 9. Package samples and complete the necessary paperwork.
- 10. Transport sample(s) to the decontamination zone for preparation for transport to the analytical laboratory.
- 11. On completion, remove the tubing from the well and either replace the Teflon tubing and bladder with new dedicated tubing and bladder or rigorously decontaminate the existing materials.

7.4.4 Suction Pumps

Suction pumps are not recommended for sampling because it is operated by a vacuum and could remove volatile organics from the sample.

7.4.5 Inertia Pumps

Inertia pumps may be used to collect samples. It is more common, however, to purge with these pumps and sample with a bailer (Section 7.4.1).

- 1. Following well evacuation, allow the well to recharge.
- 2. Assemble the appropriate bottles.
- 3. Because these pumps are manually operated, the flow rate may be regulated by

Sentific Engineering Response and Analysisal Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 17 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

the sampler. The sample may be discharged from the pump outlet directly into the sample container.

- Cap the sample container tightly and place the prelabeled sample container in a carrier.
- 5. Replace the well cap.
- 6. Log all samples in the site logbook and on the field data sheets and label all samples.
- 7. Package samples and complete necessary paperwork.
- 8. Upon completion, remove pump and decontaminate or discard, as appropriate.

7.5 Filtering

Samples collected for dissolved metals analysis may require filtration. The filter must be changed or decontaminated between uses. Several types of filters are available. A barrel filter such as the "Geotech" works with a pneumatic (e.g. bicycle) pump, used to build up positive pressure in the chamber containing the sample, which is then forced through the filter paper (minimum size $0.45\,\mu m$) into a jar placed underneath. The barrel itself is filled manually from the bailer or directly via the hose of the sampling pump. The pressure must be maintained up to 30 pounds/square inch (lbs/in²) by periodic pumping.

A vacuum type filter involves two chambers; the upper chamber contains the sample and a filter (minimum size $0.45~\mu m$) divides the chambers. Using a hand pump or a Gillian type pump, air is withdrawn from the lower chamber, creating a vacuum and thus causing the sample to move through the filter into the lower chamber where it is drained into a sample jar. Repeated pumping may be required to drain the entire sample into the lower chamber. If preservation of the sample is necessary, this should be done after filtering.

An in-line filter may be used with a peristaltic pump to transfer the sample from the original sample jar, through the filter, and into a new sample jar. In-line filters are used specifically for the preparation of groundwater samples for dissolved metals analysis, and for filtering large volumes of turbid groundwater. Groundwater samples collected for VOCs are generally not filtered. The filtering of groundwater is performed primarily to allow for the collection of silty or particulate-laden samples that would otherwise interfere with the laboratory analysis. The filters used in groundwater sampling are either cartridge type filters inserted into a reusable housing, or are self-contained and disposable. Disposable filters are preferred and often used to reduce cross-contamination of groundwater samples. Disposable filter chambers are usually constructed of polypropylene material, with an inert filtering material within the housing. Both reusable and disposable filters have barb or national pipe thread (NPT) fittings on the inlet and outlet sides of the housing to connect to 3%" or 5%" tubing.

7.6 Special Considerations for VOC Sampling

Scientific Engineering Response and Administration Controllers SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 18 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

The proper collection of a sample for VOC analysis requires minimal disturbance of the sample to limit volatilization. Sample retrieval systems suitable for collection of volatile organic samples are: positive displacement bladder pumps, gear driven submersible pumps, syringe samplers and bailers (Barcelona et al, 1984; Nielsen and Yeates, 1985). Field conditions and other constraints will limit the choice of appropriate systems. The concern must be to collect a valid sample that has been subjected to the least amount of turbulence possible.

The following procedures should be used:

- 1. Open the vial, set cap in a clean place, and collect the sample. When collecting duplicates, collect both samples at the same time.
- 2. Fill the vial to just overflowing. Do not rinse the vial, or let it excessively overflow. There should be a convex meniscus on the top of the vial.
- 3. Check that the cap has not been contaminated (splashed) and carefully cap the vial. Place the cap directly over the top and screw down firmly. Do not overtighten and break the cap.
- 4. Invert the vial and tap gently. Observe vial for at least ten (10) seconds. If an air bubble appears, discard the sample and resample. It is imperative that no air is trapped in the sample vial.
- 5. The holding time for samples to be analyzed for VOCs is seven days. Samples should be shipped or delivered to the laboratory in as short a time as practical in order to arrive before the holding time has expired. Ensure that the samples are stored at 4°C during transport but do not allow them to freeze. The most readily available method of cooling is to use ice packed in double-sealed plastic bags (Ziploc® baggies).

8.0 CALCULATIONS

If it is necessary to calculate the volume of the well, use the following equation:

Well Volume (gallons) = $\pi r^2 hk$

where:

 $\pi = 3.14$

r = radius of monitor well (feet)

 h = height of the water column (feet). This may be determined by subtracting the depth to water from the total depth of the well as measured from the same reference point.

k = conversion factor, 7.48 gallons per cubic foot (gal/ft³)

Monitor well diameters typically have a diameter of 2 to 4 inches. If the diameter of the monitor well is known, standard conversion factors can be used to simplify the equation above.

Similific Engineering Resource and Analytical Services SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 19 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

The volume, in gallons per linear foot, for various standard monitor well diameters can be calculated as follows:

$$V(gal/ft) = \pi r^2 k$$
 or $V = 23.5r^2$

where:

 $\pi = 3.14$

r = radius of monitoring well (feet) k = conversion factor (7.48 gal/ft³)

For a 2-inch diameter well, the volume, in gallons per linear foot, can be calculated as follows:

V/linear ft =
$$\pi r^2 k$$

= 3.14 (1/12)² (7.48 gal/ft³)
= 0.163 gal/ft

The well radius must be in feet to be able to use the equation.

The conversion factors (f) for the most common diameter monitor wells are as follows:

Well diameter-inches 2 3 4 6
Volume (gal/ft.) 0.1631 0.3670 0.6528 1.4680

If you use the conversation factors above, Equation 1 should be modified as follows:

Well
$$V = he$$

where:

h = height of water column (feet)

f =conversion factor

9.0 QUALITY ASSURANCE/QUALITY CONTROL

There are no specific quality assurance (QA) activities that apply to the implementation of these procedures. However, the following general QA procedures apply:

- 1. All sample collection data, including purge methods and time, sample collection methods, times of collection, analyses required, and decontamination procedures (if any) must be documented on field data sheets or within site logbooks.
- All instrumentation must be operated in accordance with operating instructions as supplied by the manufacturer, unless otherwise specified in the work plan. Equipment checkout and calibration

SERAS

STANDARD OPERATING PROCEDURES

SOP: 2007 PAGE: 20 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

must occur prior to purging or sampling and should be done according to the instruction manuals supplied by the manufacturer. All calibration procedures should be documented in the site logbook.

- 3. The collection of rinsate blanks is recommended to evaluate potential for cross contamination from the purging and/or sampling equipment.
- 4. Trip blanks are required if analytical parameters include VOCs.

10.0 DATA VALIDATION

This section does not apply to this SOP.

11.0 HEALTH AND SAFETY

When working with potentially hazardous materials, follow U.S. EPA, Occupational Safety and Health Administration (OSHA) or SERAS health and safety guidelines. More specifically, depending upon the site specific contaminants, various protective programs must be implemented prior to sampling the first well. The site health and safety plan should be reviewed with specific emphasis placed on the protection program planned for the well sampling tasks. Standard safe operating practices should be followed such as minimizing contact with potential contaminants in both the vapor phase and liquid matrix through the use of respirators and disposable clothing.

When working around volatile organic contaminants:

- 1. Avoid breathing volatile constituents venting from the well.
- 2. Check the well head-space with a FID/PID prior to sampling.
- If monitoring results indicate organic constituents, it may be necessary to conduct sampling
 activities in Level C protection. At a minimum, skin protection will be afforded by disposable
 protective clothing.

Physical hazards associated with well sampling:

- 1. Lifting injuries associated with pump and bailers retrieval; moving equipment.
- 2. Use of pocket knives for cutting discharge hose.
- 3. Heat/cold stress as a result of exposure to extreme temperatures in protective clothing.
- 4. Slip, trip, fall conditions as a result of pump discharge.
- 5. Restricted mobility due to the wearing of protective clothing.
- 6. Electrical shock associated with use of submersible pumps is possible. Use a GFCI or a copper

SOP: 2007 PAGE: 21 of 21 REV: 0.0 DATE: 4/16/01

GROUNDWATER WELL SAMPLING

grounding stake to avoid this problem.

12.0 REFERENCES

Barcelona, M.J., J.A. Helfrich, E.E. Garske, J.P. Gibb. 1984. "A Laboratory Evaluation of Groundwater Sampling Mechanisms." *Groundwater Monitoring Review.* p. 32-41.

Barcelona, M.J., J.A. Helfrich, E.E. Garske. 1985. "Sampling Tubing Effects on Groundwater Samples." *Analytical Chemistry*. Vol. 57. p. 460-463.

Nielsen, David M. and Gillian L. Yeates. 1985. "A Comparison of Sampling Mechanisms Available for Small-Diameter Groundwater Monitoring Wells." *Groundwater Monitoring Review*. p. 83-99.

13.0 APPENDICES

This section does not apply to this SOP.

SOP: 2013 PAGE: 1 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

CONTENTS

1.0	SCOPE	E AND A	PPLICATION
2.0	METH	OD SUM	MARY*
3.0	SAMPI	LE PRES	ERVATION, CONTAINERS, HANDLING, AND STORAGE
4.0	INTER	FERENC	CES AND POTENTIAL PROBLEMS
5.0	EQUIP	MENT/A	APPARATUS*
6.0	REAGI	ENTS	
7.0	PROCE	EDURES	
	7.1 7.2	Prepara Represe	ction entative Sampling Considerations
		7.2.1	Sampler Composition
	7.3	Sample	Collection
		7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	Kemmerer Bottle* Van Doren Sampler* Bacon Bomb Sampler* Dip Sampler Direct Method
8.0	CALCU	JLATIO	NS
9.0	QUAL	TY ASS	URANCE/QUALITY CONTROL*
10.0	DATA	VALIDA	ATION
11.0	HEALT	ΓH AND	SAFETY
12.0	REFER	ENCES*	\$

SOP: 2013 PAGE: 2 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

CONTENTS (cont)

13.0 APPENDICES*

A - Figures*

SUPERSEDES: SOP #2013; Revision 0.0; 11/17/94; U.S. EPA Contract EP-W-09-031.

^{*} These sections affected by Revision 0.0.

SOP: 2013 PAGE: 3 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

1.0 SCOPE AND APPLICATION

This standard operating procedure (SOP) is applicable to the collection of representative surface water samples from streams, rivers, lakes, ponds, lagoons, and surface impoundments. It includes samples collected from depth, as well as samples collected from the surface.

These are standard (i.e., typically applicable) operating procedures which may be varied or changed as required, dependent upon site conditions, equipment limitations or limitations imposed by the procedure. In all instances, the ultimate procedures employed should be documented and associated with the final report.

Mention of trade names or commercial products does not constitute United States Environmental Protection Agency (U.S. EPA) endorsement or recommendation for use.

2.0 METHOD SUMMARY

Sampling situations vary widely; therefore, no universal sampling procedure can be recommended. However, surface water sampling is generally accomplished through the use of one of the following samplers or techniques:

- Kemmerer bottle
- Van Doren sampler
- Bacon bomb sampler
- Dip sampler
- Direct method

These samplers and sampling techniques will result in the collection of representative samples from the majority of surface waters and impoundments encountered.

3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE

Once samples have been collected, the following procedures should be followed:

- 1. Transfer the sample(s) into suitable, labeled sample containers specific for the analyses to be performed.
- 2. Preserve the sample, if appropriate, or use pre-preserved sample bottles. Do not overfill bottles if they are pre-preserved.
- 3. Cap the container securely, place in a resealable plastic bag, and cool to 4°C.
- 4. Record all pertinent data in the site logbook and/or on field data sheets.
- 5. Complete the Chain of Custody record.
- 6. Attach custody seals to cooler prior to shipment.

SOP: 2013 PAGE: 4 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

7. Decontaminate all non-dedicated sampling equipment prior to the collection of additional samples.

4.0 INTERFERENCES AND POTENTIAL PROBLEMS

There are two primary interferences or potential problems associated with surface water sampling. These include cross contamination of samples and improper sample collection.

- 1. Cross contamination problems can be eliminated or minimized through the use of dedicated or disposable sampling equipment. If this is not possible or practical, then decontamination of sampling equipment is necessary. Refer to ERT/SERAS SOP #2006, Sampling Equipment Decontamination.
- 2. Improper sample collection can involve using contaminated equipment, disturbance of the stream or impoundment substrate, and sampling in an obviously disturbed or non-representative area.

Following proper decontamination procedures, minimizing disturbance of the sample site, and careful selection of sampling locations will eliminate these problems. Proper timing for the collection of samples must be taken into consideration due to tidal influences and low or fast-flowing streams or rivers.

5.0 EQUIPMENT/APPARATUS

Equipment needed for collection of surface water samples may include (depending on technique chosen):

- Kemmerer bottles
- Van Doren sampler
- Bacon bomb sampler
- Dip sampler
- Line and messengers
- Peristalic pump
- Tygon tubing
- 0.45 micron (μm) filters
- Sample bottles/preservatives
- pH paper
- Resealable plastic bags
- Ice
- Coolers, packing material
- Chain of Custody records, custody seals
- Field data sheets
- Decontamination equipment/supplies
- Maps/plot plan
- Safety equipment
- Compass
- Tape measure
- Survey stakes, flags, or buoys and anchors
- Camera and film

SOP: 2013 PAGE: 5 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

- Logbook/waterproof pen
- Sample bottle labels
- Paper towels
- Disposable pipets
- Hydrolab

6.0 REAGENTS

Reagents will be utilized for preservation of samples and for decontamination of sampling equipment. The preservatives required are specified by the analysis to be performed and are summarized in ERT/SERAS SOP #2003, Sample Storage, Preservation and Handling. Decontamination solutions are specified in ERT/SERAS SOP #2006, Sampling Equipment Decontamination.

7.0 PROCEDURES

7.1 Preparation

- 1. Determine the extent of the sampling effort, the sampling methods to be employed, and the types and amounts of equipment and supplies needed.
- 2. Obtain the necessary sampling and monitoring equipment.
- 3. Decontaminate or pre-clean equipment, and ensure that it is in working order.
- 4. Prepare scheduling and coordinate with staff, clients, and regulatory agency, if appropriate.
- 5. Perform a general site survey prior to site entry, in accordance with the site specific Health and Safety Plan (HASP).
- 6. Use stakes, flags, or buoys to identify and mark all sampling locations. If required, the proposed locations may be adjusted based on site access, property boundaries, and obstructions.

7.2 Representative Sampling Considerations

In order to collect a representative sample, the hydrology and morphometrics of a stream, river, pond, lake or impoundment should be determined prior to sampling. This will aid in determining the presence of phases or layers in lagoons or impoundments, flow patterns in streams, and appropriate sample locations and depths.

Water quality data should be collected in ponds, lakes and impoundments to determine if stratification is present. Measurements of dissolved oxygen, pH, conductivity, oxidation-potential, temperature and turbidity can indicate if strata exist that would affect analytical results. Measurements should be collected at one-meter intervals from the surface to the bottom using the appropriate instrument (i.e., a Hydrolab or equivalent). These water quality measurements can assist in the interpretation of analytical data, and the selection of sampling sites and depths when

SOP: 2013 PAGE: 6 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

surface water samples are collected.

Factors that contribute to the selection of a sampling device used for sampling surface waters in streams, rivers, lakes, ponds, lagoons, and surface impoundments are:

- Width, depth, flow and accessibility of the location being sampled
- Whether the sample will be collected onshore or offshore

7.2.1 Sampler Composition

The appropriate sampling device must be of a proper composition. Selection of samplers constructed of glass, stainless steel, polyvinyl chloride (PVC) or PFTE (Teflon) should be based upon the suspected contaminants and the analyses to be performed.

7.3 Sample Collection

7.3.1 Kemmerer Bottle

A Kemmerer bottle (Figure 1, Appendix A) may be used in most situations where site access is from a boat or structure, such as a bridge or pier, and where samples at specific depths are required. Sampling procedures are as follows:

- 1. Use a properly decontaminated Kemmerer bottle. Set the sampling device so that the upper and lower stoppers are pulled away from the body, allowing the surface water to enter tube.
- Lower the pre-set sampling device to the predetermined depth. Avoid disturbance of the bottom.
- 3. When the Kemmerer bottle is at the required depth, send the weighted messenger down the suspension line, closing the sampling device.
- 4. Retrieve the sampler and discharge the first 10-20 milliliters (mL) from the drain to clear potential contamination from the valve. This procedure may be repeated if additional sample volume is needed to fulfill analytical requirements. Subsequent grabs may be composited or transferred directly to appropriate sample containers.

7.3.2 Van Doren Sampler

A Van Doren sampler (Figure 2, Appendix A) is used to collect surface water from a very specific sampling depth or from a shallow water body. Since the sampler is suspended horizontally, the depth interval sampled is the diameter of the sampling tube. The sampling procedure is as follows:

1. Use a properly decontaminated Van Doren sampler. Set the device so that the end stoppers are pulled away from the body allowing surface water to enter the

SOP: 2013 PAGE: 7 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

tube.

- 2. Lower the pre-set sampling device to the predetermined depth. Avoid disturbance of the bottom.
- 3. When the Van Doren is at the required depth, send the weighted messenger down the suspension line, closing the sampling device.
- 4. Retrieve the sampler and discharge the first 10-20 milliliters (mL) from the drain to clear potential contamination from the valve. This procedure may be repeated if additional sample volume is needed to fulfill analytical requirements. Subsequent grabs may be composited or transferred directly to appropriate sample containers.

7.3.3 Bacon Bomb Sampler

A bacon bomb sampler (Figure 3, Appendix A) may be used in situations similar to those outlined for the Kemmerer bottle. Sampling procedures are as follows:

- 1. Lower the bacon bomb sampler carefully to the desired depth, allowing the line for the trigger to remain slack at all times. When the desired depth is reached, pull the trigger line until taut. This will allow the sampler to fill.
- 2. Release the trigger line and retrieve the sampler.
- 3. Discharge the first 10-20 milliliters (mL) from the drain to clear potential contamination from the valve. This procedure may be repeated if additional sample volume is needed to fulfill analytical requirements. Subsequent grabs may be composited or transferred directly to appropriate sample containers.

7.3.4 Dip Sampler

A dip sampler (Figure 4, Appendix A) is useful in situations where a sample is to be recovered from an outfall pipe or along a lagoon bank where direct access is limited. The long handle on such a device allows access from a discrete location. Sampling procedures are as follows:

- 1. Assemble the device in accordance with the manufacturer's instructions.
- Extend the device to the sample location and collect the sample by dipping the sampler into the water.
- 3. Retrieve the sampler and transfer the sample to the appropriate sample container(s).

7.3.5 Direct Method

SOP: 2013 PAGE: 8 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

For streams, rivers, lakes, and other surface waters, the direct method may be utilized to collect water samples directly into the sample container(s). Health and safety considerations must be addressed when sampling lagoons or other impoundments where specific conditions may exist that warrant the use of additional safety equipment. These issues must be addressed in the site-specific HASP.

Using adequate protective clothing, access the sampling station by appropriate means. For shallow stream stations, collect the sample under the water surface while pointing the sample container upstream; the container must be upstream of the collector. Avoid disturbing the substrate. For lakes and other impoundments, collect the sample under the water surface while avoiding surface debris and the boat wake.

When using the direct method, do not use pre-preserved sample bottles as the collection method may dilute the concentration of preservative necessary for proper sample preservation.

8.0 CALCULATIONS

This section is not applicable to this SOP.

9.0 QUALITY ASSURANCE/QUALITY CONTROL

There are no specific quality assurance (QA) activities which apply to the implementation of these procedures. However, the following general QA procedures apply:

- 1. All data must be documented on field data sheets or within site logbooks.
- 2. All instrumentation must be operated in accordance with operating instructions as supplied by the manufacturer, unless otherwise specified in the work plan. Equipment checkout and calibration activities must occur prior to sampling/operation and they must be documented.
- 3. To avoid the incidental inclusion of disturbed sediment in the sample, surface water should be collected from a downstream to upstream direction and upstream of any activity that may disturb the sediment (i.e., wading).
- 4. While collecting surface water using the direct method, the sample container should be held below the surface to avoid the collection of floating debris.
- 5. Water quality data should be collected to detect the presence of stratified layers or other site-specific characteristics that would affect the sample.

10.0 DATA VALIDATION

This section is not applicable to this SOP.

11.0 HEALTH AND SAFETY

SOP: 2013 PAGE: 9 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

When working with potentially hazardous materials, follow U.S. EPA, Occupational Health and Safety (OSHA) and corporate health and safety procedures.

More specifically, when sampling lagoons or surface impoundments containing known or suspected hazardous substances, adequate health and safety and boating precautions must be taken to ensure the safety of sampling personnel.

12.0 REFERENCES

Wilde, F.D., D.B. Radtke, J. Gibs and R.T. Iwatsubo. 1998. National Field Manual for the Collection of Water-Quality Data - Selection of Equipment for Water Sampling. U.S. Geological Survey Techniques of Water - Resources Investigations, Book 9, Chap. A2, variously paged.

http://water.usgs.gov/owq/FieldManual/index.htmland http://water.usgs.gov/owq/FieldManual/mastererrat.html

U.S. Environmental Protection Agency. 1984. Characterization of Hazardous Waste Sites - A Methods Manual: Volume II. Available Sampling Methods, Second Edition. EPA/600/4-84-076.

13.0 APPENDICES

A - Figures

SOP: 2013 PAGE: 10 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

APPENDIX A Figures SOP #2013 February 2002

SOP: 2013 PAGE: 11 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

FIGURE 1. Kemmerer Bottle

SOP: 2013 PAGE: 12 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

FIGURE 2. Van Doren Sampler

SOP: 2013 PAGE: 13 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

FIGURE 3. Bacon Bomb Sampler

SOP: 2013 PAGE: 14 of 14 REV: 0.0 DATE: 02/15/02

SURFACE WATER SAMPLING

FIGURE 4. Dip Sampler

SERAS

11.0 HEALTH AND SAFETY

STANDARD OPERATING PROCEDURES

SOP: 2139 PAGE: 1 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

CONTENTS

1.0	SCOPE	AND APPLICATION
2.0	METHO	DD SUMMARY
3.0	SAMPI	E PRESERVATION, CONTAINERS, HANDLING, AND STORAGE
4.0	INTER	FERENCES AND POTENTIAL PROBLEMS
	4.1 4.2	MultiRae Plus Instrument Limitations Regulatory Limitations
5.0	EQUIP	MENT/APPARATUS
6.0	REAGE	ENTS
7.0	PROCE	DURES
	7.1 7.2 7.3	Preparation Start-Up Procedures Field Operation
		7.3.1 Field Calibration7.3.2 Operation
	7.4	Data Logging
		7.4.1 Datalog Options7.4.2 Datalog Start/Stop
	7.5	Post Operation
8.0	CALCU	ULATIONS
9.0	QUALI	TY ASSURANCE/QUALITY CONTROL
10.0	DATA	VALIDATION

SOP: 2139 PAGE: 2 of 19 REV: 0.0

DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

CONTENTS (cont)

12.0 REFERENCES

13.0 APPENDIX

A - Tables

SOP: 2139 PAGE: 3 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

1.0 SCOPE AND APPLICATION

The purpose of this Standard Operating Procedure (SOP) is to describe the procedures for using the Multi Gas Monitor PGM-50 Photo-Ionization Detector MultiRAE Plus (hereinafter called the MultiRAE Plus). The MultiRAE Plus is a portable, nonspecific, vapor/gas detector employing the principle of Photo-Ionization and a combination of electrochemical sensors to measure a variety of organic vapors in parts per million (ppm),oxygen (O₂) concentration in percent by volume (vol%) and combustible gases near their explosive limit (LEL) in percentage, and up to two inorganic toxic gases in ppm.

2.0 METHOD SUMMARY

The MultiRAE Plus is a useful general survey instrument at hazardous waste sites, capable of detecting and measuring real-time concentrations of many organic and inorganic vapors in air. The MultiRAE Plus is similar to a flame ionization detector (FID) in application; however, the MultiRAE Plus has somewhat broader capabilities in that it can detect certain inorganic vapors, oxygen levels, and specific toxics. Conversely, the MultiRAE Plus is unable to respond to certain low molecular weight hydrocarbons, such as methane and ethane that are readily detected by FID instruments.

The MultiRae Plus will respond to most vapors that have an ionization potential less than or equal to that supplied by the ionization source, which is an ultraviolet (UV) lamp. Photo-ionization occurs when an atom or molecule absorbs a photon of sufficient energy to release an electron and form a positive ion. This will occur when the ionization potential of the molecule measured in electron volts (eV) is less than the energy of the photon. Though it can be calibrated to a particular compound, the instrument cannot distinguish between detectable compounds in a mixture of gases and, therefore, provides an integrated response to the mixture.

Two lamps, each containing a different UV light source, with energy levels of 10.6 and 11.7 ev, are available for use with the MultiRAE Plus. Both detect many aromatic and large molecular hydrocarbons, some smaller organic molecules, and some halogenated hydrocarbons.

Gases with ionization potentials near to or less than that of the lamp will be ionized. These gases will thus be detected and measured by the analyzer. Gases with ionization potentials higher than that of the lamp will not be detected. Ionization potentials for various atoms, molecules, and compounds are provided in Table 1 (Appendix A). The ionization potential of the major components of air (O_2 , nitrogen, and carbon dioxide) range from about 12.0 eV to about 15.6 eV and are not ionized by either of the two lamps.

The MultiRAE Plus contains a protected catalytic bead for measuring combustible gases as a percentage of their LELs, and interchangeable electrochemical sensors for measuring oxygen and up to two toxic gases. The two plug in "smart" toxic sensor ports may be configured for: carbon monoxide (CO), hydrogen sulfide (H₂S), sulfur dioxide (SO₂), nitric oxide (NO), nitrogen dioxide (NO₂), chlorine (CL₂), hydrogen cyanide (HCN), ammonia (NH₃), phosphine (PH₃), and ethylene oxide (ETO). The NO, ETO or NH₃ toxic sensors require a special 300 millivolt (mV) bias voltage to operate. Only the first toxic sensor socket provides such a special bias voltage.

3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE

This section is not applicable to this SOP.

Scientific Engineering Proposes used Scientific Sciences SERAS

STANDARD OPERATING PROCEDURES

SOP: 2139 PAGE: 4 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

4.0 INTERFERENCES AND POTENTIAL PROBLEMS

4.1 MultiRAE Plus Instrument Limitations

- The PID is a nonspecific total vapor detector. The PID cannot distinguish one ionizable gas from another. If there is more than one compound present, it will not give an accurate reading of a specific gas, the reading will be an approximate reading of the total gas concentration.
- The MultiRAE Plus must be calibrated to a specific compound.
- The MultiRAE Plus does not respond to certain low molecular weight hydrocarbons, such as methane and ethane. If the ionization energy (IE) of a compound is higher than that of the UV lamp, it cannot be measured by the PID.
- High humidity level and the presence of other non-ionizable gas such as methane at 10 vol% can reduce the sensitivity of the PID. These effects can be reduced with the use of membrane filters.
- When volatile organic compound concentrations are greater than a few thousand ppm the PID will lose accuracy, and become over saturated. Some of the gas molecules will be blocked from the UV lamp and therefore will not be ionized.
- This instrument cannot to be exposed to precipitation (rain) and can only operate in temperatures between 4 degrees and 113 degrees Fahrenheit.
- Do not use this instrument for head space analysis where liquids can inadvertently be drawn into the probe.
- The high pump setting is required for vapors that are especially reactive or absorb easily to instrument surfaces. Vapors include CL₂, PH₃, NH₃, HCN, and semi-volatile organic compounds like diesel fuel and jet fuels. Removal of the filter will increase the pump speed to about three hundred (cc/min.)

4.2 Regulatory Limitations

Transport of calibration gas cylinders by passenger and cargo aircraft must comply with International Air Transport Association (IATA) Dangerous Goods Regulations or the U.S. Code of Federal Regulations, 49 CFR Parts 100-177. A typical calibration gas included with a MultiRae Plus is isobutylene or RAE multi gas mix. It is classified as a non-flammable gas, UN #1556, and the proper shipping name is Compressed Gas. It must be shipped by cargo aircraft only.

5.0 EQUIPMENT/APPARATUS

The following equipment is required for MultiRAE Plus operation:

- MultiRae Plus
- Operating manual
- Lamps: 10.6 eV, or 11.7 eV

SOP: 2139 PAGE: 5 of 19 REV: 0.0

DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

- Battery charger for MultiRAE Plus
- Spare batteries
- Teflon tubing
- Isobutylene or RAE multi-gas calibration gas
- "T" valve for calibration
- Field Data Sheets/Site Logbook
- Rubber boot with belt clip
- Calibration regulator
- Water trap adapter
- Water trap filters
- Inlet probe 3 inch
- Strap for carrying MultiRAE Plus
- Teflon tubing for downhole measurements
- Carbon filters

NOTE: Battery charge status - This instrument may be kept on continuous charge without battery damage. The unit can be used while simultaneously charging.

6.0 REAGENTS

- Isobutylene standards for calibration
- RAE multi-gas calibration
- Mild soap solution for cleaning unit surfaces
- Specific gas standards when calibrating to a specific compound

The MultiRAE Plus is calibrated in accordance with the operations manual using isobutylene or RAE multigas as the calibration standards. The operations manual may also be referred to for alternate calibration to a specific compound.

7.0 **PROCEDURES**

7.1 Preparation

Check out and ensure the proper operation of the MultiRAE Plus, as appropriate, using the equipment checklist provided in Sections 5.0 and 6.0 and the steps listed below.

7.2 Start-Up Procedures

- 1. To turn the unit on press and release the [MODE] key. Allow the unit to warm up for 60 seconds.
- The monitor will display the preset alarm limits for each sensor, the battery voltage, the user 2. mode, the alarm mode, the available data storage memory (in hours), the data mode, and the datalog interval (in seconds). After 10 seconds, the display will show the instantaneous reading of the gas concentration in ppm and is ready to monitor.
- 3. Oxygen should read 20.9% and all other numbers should read 0. If any sensors are not correct, perform a fresh air calibration (refer to section 7.3.1 Field Calibration).

SOP: 2139 PAGE: 6 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

4. To zero the instrument, Press the [Y/+] key at the "Fresh air calibration?" prompt.

7.3 Field Operation

7.3.1 Field Calibration

- 1. Follow the start-up procedure in Section 7.2.
- 2. Enter the program mode by pressing and holding both the [N/-]key and [MODE] key for three seconds. The first menu item displayed will be "Calibrate Monitor?", press the [Y/+] to enter the calibration mode.
- If asked for a password, use [Y/+] and [N/-] keys to set the digits of the password, and the [MODE] key to move the cursor. Hold the [MODE] for one second when done.
- 4. In calibration mode check the "Modify Span Gas Value?" by pressing the [Y/+] key.
- 5. If the span gas values are correct (calibration gas concentration and span are set at the same ppm value) press and hold the [MODE] key to continue calibrating. If a span needs to be changed, press the [Y/+] and [N/-] keys to change the digit value; press the [MODE] key momentarily to switch from one digit to the next. When completed press and hold the [MODE] key for one second to save the new calibration gas value.
- 6. Press the [Y/+] key to "Calibrate monitor?"
- 7. For the fresh air calibration first press the [Y/+] key at the "Fresh air calibration?" prompt. You must be in a clean air environment, to continue the calibration. If you are not in a clean environment, a "zero" air bottle can be attached to the inlet port to continue the calibration.
- 8. For the multiple sensor calibration press the [Y/+] key at the "Multiple sensor calibration?" prompt.
- 9. To calibrate all the sensors shown in the display, apply the gas by attaching a tube from the regulator on the calibration bottle to the inlet port on the monitor, and press the [Y/+] key. To change the sensor selection, press the [N/-] key, then use the [MODE] key to position the cursor, the [Y/+] key to select a sensor, and the [N/-] key to deselect a sensor. Connect the gas and then hold the [MODE] key to start the calibration.
- 10. For a single sensor calibration press the [Y/+]key to "Single sensor calibration?" prompt, use the [MODE] key to select a sensor, connect the gas, and then press the [Y/+]key to start the calibration.

SOP: 2139 PAGE: 7 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

11. Upon completion of the calibration record the following information in the site logbook: the instrument identification (ID) number (U.S. EPA decal or serial number if the instrument is a rental), the date and time, the concentration of and the type of calibration gas used, and the name of the person who field calibrated the instrument.

7.3.2 Operation

The MultiRAE has three different modes of operation: the text mode, the display mode, and the programming mode (the default).

- 1. In the text mode the monitor will display the sensor name after the monitor is turned on. The [MODE] key can then be used to see the instantaneous gas concentration reading, the battery voltage, and to enter the personal computer (PC) menu. The user can also get to the calibration mode from the text mode to calibrate the monitor.
- 2. In the display mode, the MultiRAE Plus is able to display all the information in the text mode. Additional options available by depressing the [MODE] key:
 - Peak the highest reading of gas concentration since the monitor was turned on
 - Minimum- the lowest reading of each gas concentration since the monitor was turned on
 - Short term exposure level (STEL)- the last 15 minute average reading of the gas concentration
 - Time weighted average(TWA)- the accumulated reading of the gas concentration divided by 8 hours since the monitor was turned on
 - Run time- in hours and minutes
 - Temperature- in degree Celsius (°C)
 - Datalog mode(or enable/disable datalogging operation in manual datalog mode)
 - LEL/VOC gas names
 - Printing and communication with a PC options
 - The user will not be able to calibrate or change parameters from the display mode.
- 3. In the programming mode which is, the default setting, the user may perform all the functions of the MultiRAE Plus.
- 4. Under no circumstances should the probe tip assembly be immersed in fluid.
- 5. While taking care to prevent the MultiRAE Plus from being exposed to excessive moisture, dirt, or contamination, monitor the work activity as specified in the site Health and Safety Plan. The MultiRAE Plus survey should be conducted at a slow to moderate rate of speed and the intake

SOP: 2139 PAGE: 8 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

assembly (the probe) slowly swept from side to side. There is a three to five second delay in read-out depending upon the instruments sensitivity to the contaminant.

6. When the activity is completed, or at the end of the day, carefully clean the outside of the MultiRAE Plus with a damp disposable towel to remove any visible dirt.

7.4 Data Logging

The MultiRAE Plus calculates and stores gas readings based on a user-specified datalogging period and the type of measurements. Average or peak measurements can be stored for each sensor during each datalogging interval. The datalogging interval can be set from one second to 60 minutes in one-second increments. In addition, time stamp, user ID, site ID, serial number, last calibration date, and alarm limits are stored. All data is retained in anon-volatile memory, which can be downloaded to a PC.

7.4.1 Datalog Options

- Automatic: start and stop datalogging automatically when the monitor is turned on and off
- 2. Manual: start and stop datalogging by pressing the key manually. There is a timer available to setup the maximum datalog time.
- 3. Periodic: start and stop datalogging daily based on a preset time (hour and minute).
- 4. Schedule: start and stop datalogging based on a preset date and time (month, date, hour, and minute).

7.4.2 Datalog start/stop

If the manual datalogging option has been selected from the menu, toggle through the menu using [MODE] key until "Start Datalog?" prompt is displayed.

- 1. Pressing the [Y/+] key turns on datalogging.
- 2. Pressing the [Y/+ key a second time will stop the datalogging.

All other datalogging options will stop and start automatically.

7.5 Post Operation

- 1. To turn off the monitor press and hold the [MODE] key for 5 seconds. The monitor will beep once per second during the power-down sequence. The message "Off!.." flashes on the screen and then the screen goes blank.
- 2. Turning the monitor off with the AC charger in place will result in a display of

SOP: 2139 PAGE: 9 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

"Charging..." or "Battery Charged". This means the unit is off, but the smart charger circuit is now active.

3. Check the equipment, repair or replace damaged equipment, and charge the batteries.

8.0 CALCULATIONS

The MultiRAE Plus can be used for the detection of a wide variety of gases that exhibit different responses. Any compound with IE lower than that of the lamp photons can be measured. The best way to calibrate a PID to different compounds is to use a standard of the gas of interest. Correction factors have been determined that enable the user to quantify a large number of chemicals using only a single calibration gas, typically isobutylene. Correction factors can be used in three ways:

- 1. Calibrate the monitor with isobutylene to read in isobutylene equivalents. Manually multiply the reading by the correction factor to obtain the concentration of the gas being measured.
- 2. Calibrate the monitor with isobutylene to read in isobutylene equivalents. Call up the correction factor (see steps below) from the instrument memory or download it from a computer. The monitor will then read directly in units of the gas of interest.

Under the "Sensor Configuration Sub-Menu" select "Change LEL/VOC Gas Selection?", by pressing the [mode] key.

Press the [Y/+] key. If the LEL sensor is installed and enabled, the display shows: [LEL Gas = ? ethane]

Otherwise, the message "No LEL installed" will be displayed and skip to Step 8.

If the user does not want to change the LEL measurement gas, press the [Y/+] key to accept the current gas and skip to Step 6.

If the user wants to modify the LEL measurement gas, press the [N/-] key first, then use the [Y/+] or the [N/-] key to scroll through a list of gas names until the desired gas name appears in the LCD display, then press the [MODE] key to select the new gas name.

The display shows "Save new gas?" To confirm the new gas, press the [Y/+] key to accept the change. Press the [N/-] key or the [MODE] key to discard the change and move to the next step.

Display shows: [methane LEL factor=1.00?], where "1.00" is the calculated correction factor of the selected gas in Step 4.

If the user does not want to modify the LEL correction factor, press the [Y/+] key and go to Step 8. To modify this factor, press the [N/-] key first. Then starting from the left-most digit, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. Repeat this process until all 4 digits of the new factor are entered. Press and hold the [MODE] key for 1 second to exit the data entry mode. If there is any change to the existing value, the display shows "Save?" Press the [Y/+] key to accept the new value and exit the gas selection sub-menu. Press the [N/-] key to discard the changes.

Scientific Engineering Proposes and Assigned Sentice SERAS

STANDARD OPERATING PROCEDURES

SOP: 2139 PAGE: 10 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

If the VOC sensor is installed and enabled, the display will show: [VOC Gas=? Isobutylene]

Otherwise, the message "No VOC installed" will be displayed and move to the next sub-menu.

If the user does not want to change the VOC measurement gas, press the [Y/+] key to accept the current gas and skip to Step 12.

If the user wants to modify the VOC measurement gas, press the [N/-] key first, then use the [Y/+] or the [N/-] key to scroll through a list of gas names until the desired gas name appears in the LCD display, then press the [MODE] key to select the new gas name.

The display shows "Save new gas?" To confirm the new gas, press the [Y/+] key to accept the change. Press the [N/-] key or the [MODE] key to discard the change and move to the next step.

Display shows: [methane VOC factor=1.00?], where "1.00" is the calculated correction factor of the selected gas in Step 10.

If the user does not want to modify the VOC correction factor, press the [Y/+] key and go to Step 8. To modify this factor, press the [N/-] key first. Then starting from the left-most digit, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. Repeat this process until all 4 digits of the new factor are entered. Press and hold the [MODE] key for 1 second to exit the data entry mode. If there is any change to the existing value, the display shows "Save?" Press the [Y/+] key to accept the new value and exit the gas selection sub-menu. Press the [N/-] key to discard the changes.

3. Calibrate the monitor with isobutylene, but input an equivalent, "corrected" span gas concentration when prompted for this value. The unit will then read directly in units of the gas of interest.

The list of correction factors and IEs is provided in Table 1.

9.0 QUALITY ASSURANCE/QUALITY CONTROL

There are no specific quality assurance activities which apply to the implementation of these procedures. However, the following general QA procedures apply:

- 1. All data must be documented on field data sheets or site logbooks.
- 2. All instrumentation must be operated in accordance with operating instructions as supplied by the manufacturer, unless otherwise specified in the work plan. Equipment checkout and calibration activities must occur prior to sampling/operation, and they must be documented.

10.0 DATA VALIDATION

This section is not applicable to this SOP.

11.0 HEALTH AND SAFETY

SOP: 2139 PAGE: 11 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

When working with potentially hazardous materials, follow U.S. EPA, OSHA, or corporate health and safety practices.

12.0 REFERENCES

RAE Systems, Inc. 2000. "Operation and Maintenance Manual." (Document No: 008-4001) Rev. F

U.S. Code of Federal Regulations, 49 CFR Parts 100 to 177, Transportation, revised November 1, 1985.

U.S. Environmental Protection Agency. 1984. "Characterization of Hazardous Waste Sites - A Methods Manual: Volume II, Available Sampling Methods, Second Edition", EPA-600/4-84-076, Environmental Monitoring Systems Laboratory, Office of Research and Development, Las Vegas, Nevada.

International Air Transport Association Dangerous Goods Regulations

SOP: 2139 PAGE: 12 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

TABLE 1. Correction Factors and Ionization Energies

				Tech	111	cai	1.4	OLE		evised 12	
Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7		E (eV)	
September 2000 and September 2000	SynonymirAbbieviation										
Acetaldehyde	F# 2. 4.74	75-07-0	C ₂ H ₄ O	NR	+	8	+	3.3	+	10.23	C25
Acetic acid	Ethanoic Acid	84-19-7	C2H4O2	NR NR	+		+	2.6	+	10.66	11
Acetic anhydride Acetone	Ethanoic Acid Anhydride 2-Propanone	108-24-7 67-64-1	C4H6O3	1.2	+	6.1	+	1.4	+	10.14	50
			C ₃ H ₆ O	1.2	+	1.1	+	4	900		
Acetone cyanohydrin Acetonitrile	2-Hydroxyisobutyronitrile	75-86-5 75-05-8	C ₄ H ₂ NO					100	+	11.1	C
Acetylene	Methyl cyanide, Cyanomethane	74-86-2	C ₂ H ₃ N					2.1	1	11.40	
	Ethyne		C ₂ H ₂	42		20	-	1000	+		n
Acrolein	Propenal	107-02-8	C3H4O	42	+	3.9	+	1.4	+	10.10	0.
Acrylic acid Acrylonitrile	Propenoic Acid Propenenitrile	79-10-7 107-13-1	C ₃ H ₄ O ₂ C ₃ H ₃ N			NR	++	1.2	+	10.00	
	Propenentale	107-13-1		4.5	+	2.4	+	1.6	+	9.67	-
Allyl alcohol	3 Chicagonana	107-18-0	C₃H ₈ O	4.0	+	4.3	*	0.7	+	9.9	
Allyl chloride Ammonia	3-Chloropropene	7664-41-7	C ₃ H ₅ Cl	NR	+	9.7	+	5.7	+	10.16	2
	and the property of the same of		H ₃ N		-	2.3					10
Amyl acetate	mix of n-Pentyl acetate & 2-Methylbutyl acetate	628-63-7	C ₇ H ₁₄ O ₂	11	+	100	+	0.95	+	<9.9	
Amyl alcohol	1-Pentanol	75-85-4	C ₅ H ₁₂ O			5		1.6		10.00	n
Aniline	Aminobenzene	62-53-3	C ₇ H ₇ N	0.50	+	0.48	+	0.47	+	7.72	713
Anisole	Methoxybenzene	100-66-3	CyH ₆ O	0.89	+	0.58	+	0.56	+	8.21	n
Arsine	Arsenic trihydride	7784-42-1	AsH ₃			1.9	+	- 4 -		9.89	0.0
Benzaldehyde	and the second second	100-52-7	C ₇ H ₆ O			122		1		9.49	n
Benzenamine, N-methyl-	N-Methylphenylamine	100-61-8	C ₇ H ₆ N			0.7				7.53	
Benzene		71-43-2	CeHe	0.55	+	0.53	+	0.6	+	9.25	0.
Benzonitrile	Cyanobenzene	100-47-0	C ₇ H ₅ N	V 5		1.6				9.62	n
Benzyl alcohol	 a-Hydroxytoluene, Hydroxymethylbenzene, 	100-51-6	C ₂ H ₆ O	1.4	+	1.1	+	0.9	+	8.26	n
Literatura Bilingan States	Benzenemethanol			-22.20		40				222	
Benzyl chloride	a-Chlorotoluene,	100-44-7	C ₇ H ₇ Cl	0.7	+	0.6	+	0.5	+	9.14	
	Chloromethylbenzene	12000		1 151		all.		- 232			
Benzyl formate	Formic acid benzyl ester	104-57-4	CaHaO2	0.9	+	0.73	+	0.66	+		n
Boron trifluoride		7637-07-2	BF ₃	NR		NR		NR		15.5	C
Bromine		7726-95-8	Br ₂	NR	+	1.30	+	0.74	+	10.51	0.
Bromobenzene		108-86-1	C _e H _e Br			0.6		0.5		8.98	n
2-Bromoethyl methyl ether		8482-24-2	C ₂ H ₇ OBr			0.84	+			~10	ne
Bromoform	Tribromomethane	75-25-2	CHBr ₂	NR	+	2.5	+	0.5	+	10.48	0.5
Bromopropane, 1-	ri-Propyl bromide	106-94-5	C ₃ H ₇ Br	150	+	1.5	+	0.6	+	10.18	n
Butadiene	1,3-Butadiene, Vinyl ethylene	106-99-0	C ₄ H ₆	0.8		0.85	+	1.1		9.07	
Butadiene diepoxide, 1,3-	1,2,3,4-Diepoxybutane	298-18-0	C ₄ H ₆ O ₂	25	+	3.5	+	1.2		~10	n
Butanal	1-Butanal	123-72-B	C ₄ H ₆ O	177		1.8	100	000		9.84	- 10
Butane	1000000	106-97-8	Callin			67	+	1.2		10.53	80
Butanol. 1-	Butyl alcohol, n-Butanol	71-36-3	C _a H ₁₀ O	70	4	4.7	+	1.4	+	9.99	2
Butanol t-	tert-Butanol, t-Butyl alcohol	75-65-0	C ₄ H ₁₀ O	6.9	+	2.9	+	365	-	9.90	10
Butene. 1-	1-Butviene	106-98-9	CaHe	5.0		0.9	- 2			9.58	D
Butoxyethanol, 2-	Butyl Cellosolve, Ethylene glycol	111-76-2	CeH ₁₄ O ₂	1.8	+	1.2	+	0.6	4	<10	2
	monobutyl ether			1.0	-		-	0.0			-
Butoxyethanol acetate	Ethanol, 2-(2-butoxyethoxy)-, acetate	124-17-4	C ₁₀ H ₂₀ O ₄			5.6				≤10.6	
Butoxyethoxyethanol	2-(2-Butoxyethoxy)ethanol	112-34-5	CeH1eOs			4.6				\$10.6	
Butyl acetate, n-		123-86-4	CeH12O2			2.6	+			10	15
Butyl acrylate, n-	Butyl 2-propenoate, Acrylic acid butyl ester	141-32-2	C ₇ H ₁₂ O ₂			1.6	+	0.6	+		1
Butylamine, n-		109-73-9	C ₄ H ₁₁ N	1.1	+	1.1	+	0.7	+	8.71	C
Butyl cellosolve	see 2-Butoxyethanol	111-76-2	Carrier	***		7.7		-	-	0.,,	-
Butyl hydroperoxide, t-	and a second amount	75-91-2	C ₄ H ₁₀ O ₂	2.0	+	1.6	+			<10	
Butyl mercaptan	1-Butanethiol	109-79-5	C ₄ H ₁₆ S	0.55	+	0.52	+			9.14	0.
Carbon disulfide	1-Data Land	75-15-0	CS ₂	4	+	12	+	0.44		10.07	1
Carbon tetrachloride	Tetrachioromethane	56-23-5	CCL.	NR		NR		1.7	+	11.47	1
Carbonyl sulfide	Carbon oxysulfide	463-58-1	cos	NIPC	+	NR	+	1.7	+	11.18	
Cellosolive see 2-Ethoxyetha											
CFC-14 see Tetrafluorometh											
CFC-113 see 1,1,2-Trichloro	-1,∠,∠-tmluoroetnane	7700							200	** **	
Chlorine		7782-50-5	Cl ₂			7.0		1.0		11.48	0.
Chlorine dioxide	TERMINAL STREET, STREE	10049-04-4	CIO ₂	NR	+	NR	+	NR	+	10.57	0.
Chlorobenzene	Monochlorobenzene	108-90-7	C ₆ H ₅ Cl	0.44	+	0.40	+	0.39	+	9.06	1
RAE		4	Phon	N. First St., le: +1.888.7 I: raesales@	Sar 23.8	1 Jose, 823			708	USA	

TABLE 1. (cont) Correction Factors and Ionization Energies

SOP: 2139 PAGE: 13 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	E (eV)	1747
Chlorobenzotrifluoride, 4-	PCBTF, OXSOL 100 p-Chlorobenzotrifluoride	98-56-6	C ₇ H ₄ ClF ₃	0.74	+	0.63	+	0.55	+	<9.8	2
Chioro-1.3-butadiene. 2-	Chloroprene	126-99-8	C _a H _a Cl			3					11
Chloro-1,1-difluoroethane, 1-	HCFC-142B, R-142B	75-68-3	C ₂ H ₃ CIF ₂	NR		NR		NR		12.0	D
Chlorodifluoromethane	HCFC-22, R-22	75-45-8	CHCIF ₂	NR		NR		NR		12.2	100
Chloroethane	Ethyl chloride	75-00-3	C ₂ H ₄ Cl	NR	+	NR	+	1.1	+	10.97	10
Chloroethanol	Ethylene chirohydrin	107-07-3	C ₂ H ₅ CIO	146.5	-	141.0		2.9		10.52	č
Chloroethyl ether, 2-	bis(2-chloroethyl) ether	111-44-4	CaHaClaO	8.6	+	3.0		2.0		10.02	
		H7. THT ASSESSE		0.0	•	3					
Chloroethyl methyl ether, 2-	Methyl 2-chloroethyl ether	627-42-9	C ₃ H ₇ CIO	1.00							n
Chloroform	Trichloromethane	67-66-3	CHCl ₃	NR	+	NR	+	3.5	+	11.37	- 1
Chloro-2-methylpropene, 3-	Methallyl chloride, Isobutenyl chloride	563-47-3	C ₄ H ₇ Cl	1.4	+	1.2	+	0.63	+	9.76	n
Chloropicrin		76-06-2	CCI ₂ NO ₂	NR	+	~400	+	7	+	?	0.
Chlorotoluene. o-	o-Chloromethylbenzene	95-49-8	C ₂ H ₂ Cl			0.5		0.6		8.83	. 5
Chlorotoluene, p-	p-Chioromethylbenzene	106-43-4	CyHyCI					0.6		8.69	r
Chlorotrifluoroethene	CTFE, Chlorotrifluoroethylene Genetron 1113	79-38-9	C ₂ CIF ₃	6.7	+	3.9	+	1.2	+	9.76	
Chlorotrimethylsilane	Generon 1113	75-77-4	C _s H _s ClSi	NR		NR		0.82	+	10.83	
Cresol, m-	m-Hydroxytoluene	108-39-4	C ₂ H ₈ O	0.57	+	0.50	+	0.57	+	8.29	п
				U.51	+		+	U.37	+		
Cresol, o-	p-Hydroxytoluene	95-48-7	C ₂ H ₈ O			1.0				8.50	
Cresol, p-	p-Hydroxytoluene	106-44-5	C ₇ H ₈ O	-00		1.4		Want.		8.35	
Crotonaldehyde	trans-2-Butenal	123-73-9	C4H ₀ O	1.5	+	1.1	+	1.0	+	9.73	
		4170-30-3									
Curnene	Isopropylbenzene	98-82-8	C ₉ H ₁₂	0.58	+	0.54	+	0.4	+	8.73	Ē
Cyanogen bromide		506-68-3	CNBr	NR		NR		NR		11.84	r
Cvanogen chloride		508-77-4	CNCI	NR		NR		NR		12.34	CO
Cyclohexane		110-82-7	CeH12	3.3	+	1.4	+	0.64	+	9.86	30
Cyclohexanol	Cyclohexyl alcohol	108-93-0	CeH ₁₂ O	1.5	+	0.9	+	1.1	+	9.75	. 5
Cyclohexanone	-,	108-94-1	CeH ₁₀ O	1.0	+	0.9	+	0.7	-	9.14	1
Cyclohexene		110-83-8	C ₆ H ₁₀			0.8	-	U.,		8.95	30
Cyclohexylamine		108-91-8	CeH ₁₃ N			1.2	77			8.62	1
Cyclopentane 85%		287-92-3	CaHan	NR	+	15	+	1.1		10.33	60
2,2-dimethylbutane 15%		201-82-3	USFIND	LALC	+	13	*	1.1		10.55	00
Cyclopropylamine	Aminocyclpropane	765-30-0	C ₄ H ₂ N	1.1	+	0.9	+	0.9	+		n
Decamethylcyclopentasiloxane		541-02-6	C ₁₀ H ₈₀ O ₈ Si ₈	0.16	+	0.13	+	0.12	+		D
Decamethyltetrasiloxane		141-62-8	C18HasOsSia	0.17	+	0.13	+	0.12	+	<10.2	7
Decane Decane		124-18-5	C10H22	4.0	+	1.4	+	0.35	+	9.65	r
Diacetone alcohol	414 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			7.0		0.7	7	0.30	*	6.00	
Dibromochloromethane	4-Methyl-4-hydroxy-2-pentanone Chlorodibromomethane	124-48-1	CeH ₁₂ O ₂ CHBr ₂ Cl	NIE		5.3		0.7		40.50	
			C-HABE-CI	NR	+	1.7	+	0.7		10.59	0.00
Dibromo-3-chloropropane, 1,2-		96-12-8	APPENDED TO THE RESERVE OF THE PERSON OF THE	NR	+		+	0.43	+		0.00
Dibromoethane, 1,2-	EDB, Ethylene dibromide, Ethylene bromide	106-93-4	C ₂ H ₄ Br ₂	NR	+	1.7	+	0.6	+	10.37	1
Dichlorobenzene, o-	1,2-Dichlorobenzene	95-50-1	CeH4Cl ₂	0.54	+	0.47	+	0.38	+	9.08	2
Dichlorodifluoromethane	CFC-12	75-71-8	CCI ₂ F ₂			NR	+	NR	+	11.75	100
Dichlorodimethylsilane		75-78-5	C2HaCl2Si	NR		NR		1.1	+	>10.7	r
Dichloroethane, 1,2-	EDC, 1,2-DCA, Ethylene dichloride	107-06-2	C ₂ H ₄ Cl ₂			NR	+	0.6	+	11.04	1
Dichloroethene, 1,1-	1,1-DCE, Vinylidene chloride	75-35-4	C ₂ H ₂ Cl ₂			0.82	+	0.8	+	9.79	
Dichloroethene. c-1.2-	o-1.2-DCE.	156-59-2	C ₂ H ₂ Cl ₂			0.8	1	-	20	9.66	20
Diditior degree le 1,2	cis-Dichloroethylene	100-00-2	W21 (2W)2			0.0				0.00	2.1.
Dichloroethene, t-1,2-	I-1,2-DCE.	156-60-5	C ₂ H ₂ Cl ₂			0.45	+	0.34	+	9.65	20
Distribution of the	trans-Dichloroethylene	100 00 0	02112012			B. 10		0.01		0.00	
Dishlore 1 Buseouthans 11	R-141B	1717-00-6	CHCLE	NR		NR	-	20	16		330
Dichloro-1-fluoroethane, 1,1- Dichloromethane	see Methylene chloride	1717-00-0	C ₂ H ₃ Cl ₂ F	PARC	+	MIK	+	2.0	+		T
		442 ER P	CHOIC	600		AID		25			
Dichloropentafluoropropane	AK-225, mix of ~45% 3,3- dichloro-1,1,1,2-pentafluoro- propane (HCFC-225ca) & ~55% 1,3-Dichloro-1,1,2,2,3- pentafluoropropane (HCFC-	442-56-0 507-55-1	C ₃ HCl ₂ F ₅	NR	+	NR	+	25	+		,0

TABLE 1. (cont) Correction Factors and Ionization Energies

SOP: 2139 PAGE: 14 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

Dichloropropane, 1,2- Dichloro-1-propene, 1,3- Dichloro-1-propene, 2,3- Dichloro-1,1,1- Trifluoroethane, 2,2- Dichloro-2,4,6- Trifluoropyridine, 3,5- Dichlorovos	ponar, O.O-dimethyl O- historovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS e Methyl ether IEA IEA MH	CAS No. 78-87-5 542-75-6 78-88-6 306-83-2 1737-83-5 682-73-7 77-73-6 68334-30-5 109-88-7 104-78-9 111-98-8 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-57-14-7	Formula C ₃ H ₆ Cl ₂ C ₄ H ₄ Cl ₂ C ₄ H ₄ Cl ₂ C ₅ H ₆ Cl ₂ C ₅ H ₆ Cl ₅ C ₆ H ₁₂ m.w. 228 m.w. 228 m.w. 228 m.w. 228 c ₄ H ₁₂ O ₄ C ₆ H ₁₆ O ₅ C ₄ H ₁₉ O ₅ C ₆ H ₁₉ O ₆ C ₆ H ₁₉ O ₇ C ₇	1.9 NR 1.1 0.57 1.3 0.71 0.84 2.6 0.87 NR 0.2	* * * * * * * * * * * * * * * * * * * *	0.96 1.3 NR 0.9 0.9 0.48 0.9 1.3 4 0.81 0.74 2.0 0.8 1.5 ~70 0.20	C +++ + +++++ +++++	0.7 0.7 10.1 0.8	+ + +	E (eV) 10.87 <10	75 1 ne ne ne 0.1 5 ne ne 25 5 0.5 1 ne ne ne
Dichloro-1-propene, 1,3- Dichloro-1-propene, 2,3- Dichloro-1-propene, 2,3- Dichloro-1,1,1- trifluoroethane, 2,2- Dichloro-2,4,6- trifluoroethane, 3,5- Dichlorovos * Dicyclopentadiene Diesel Fuel #2 (Automotive) Diethylamine Diethylamine, 3- Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethylaufide Disportopylamine, 3- Diethylaufide Disportopylamine, 3- Diethylaufide Disportopylamine Disportopylamine Disportopylamine Dimethylaufide Dimethylaufide Dimethylaufide Dimethylaufide Dimethylamine Dimethylaufide Dimethylaufide Dimethylaufide Dimethylaufide Dimethylaufide Dimethylaufide Dimethylaufide Dimethyl sulfide Dimethyl sulfi	ponar, O.O-dimethyl O- historovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS e Methyl ether IEA IEA MH	542-75-6 78-88-6 308-83-2 1737-83-5 62-73-7 77-73-6 68334-30-5 68334-30-5 109-89-7 104-78-9 111-59 111-59 111-59 111-59 111-59 111-59 112-40-3 108-83-8 108-8 108-	C3H4C12 C3HC16F3N C3CHC16F3N C4HC16O4F C16H12 m.w. 228 m.w. 228 m.w. 228 m.w. 228 m.w. 228 m.w. 228 m.w. 228 c4H12O4 C4H16N C4H1	1.9 NR 1.1 0.57 1.3 0.71 0.84 2.6 0.87 NR 0.2	*** * * *	0.96 1.3 NR 0.9 0.9 0.48 0.9 1.3 4 0.81 0.74 2.0 0.8 1.5 ~70 0.20	+++ + + ++++ +++++	0.7 0.7 10.1 0.8 0.43 0.4 0.35 0.5 1.4 0.8	++ + + + +++++	10.87 <10 <10 11.5 <9.4 8.8 8.01 9.04 7.73 9.6 8.81 8.81 8.05	75 1 me ne 0.1 5 11 11 5 ne ne 25 5 0.5 10 5 ne ne
Dichloro-1-propene, 1,3- Dichloro-1-propene, 2,3- Dichloro-1-propene, 2,3- Dichloro-1-propene, 2,3- Dichloro-1-1,1- trifluoroethane, 2,2- Dichloro-2,4,6- trifluoropyridine, 3,5- Dichlorovs Vap Dicyclopentadiene Dispyrne See Disobutyl ketone Dispyrne See Disobutyl ketone Dispyrne See Disobutyl ketone Dispyrne See Disobutyl ketone Dispyrne Dicketene Dimethyl sulfide Dimethyl sulfide Dimethyl dispyride Dimethyl dispyride Dimethyl sulfide Dimet	ponar, O.O-dimethyl O- historovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS e Methyl ether IEA IEA MH	542-75-6 78-88-6 308-83-2 1737-83-5 62-73-7 77-73-6 68334-30-5 68334-30-5 109-89-7 104-78-9 111-59 111-59 111-59 111-59 111-59 111-59 112-40-3 108-83-8 108-8 108-	C3H4C12 C3HC16F3N C3CHC16F3N C4HC16O4F C16H12 m.w. 228 m.w. 228 m.w. 228 m.w. 228 m.w. 228 m.w. 228 m.w. 228 c4H12O4 C4H16N C4H1	1.9 NR 1.1 0.57 1.3 0.71 0.84 2.6 0.87 NR 0.2	+ + + + +++	1.3 NR 0.9 0.9 0.48 0.9 0.7 1 1.3 4 0.61 0.74 2.0 0.8 1.5 ~70 0.20	+ + + ++++ +++++	0.7 10.1 0.8 0.43 0.4 0.35 0.5 1.4 0.8	* * * * * *** *	<10 <10 11.5 <9.4 8.8 8.01 9.04 7.73 9.6 8.81 8.23 ~10.5	1 ne ne 0.1 5 11 11 5 ne ne 25 5 5 10 5 ne ne
Dichloro-1-propene, 2,3- Dichloro-1,1,1- trifluoroethane, 2,2- Dichloro-2,4,6- Dichloro-2,4,6- Dichloro-2,4,6- Dichloro-2,4,6- Dichlorous	ponar, O.O-dimethyl O- historovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS e Methyl ether IEA IEA MH	78-89-6 308-83-2 1737-83-5 62-73-7 77-73-6 68334-30-5 68334-30-5 109-89-7 104-78-9 141-05-9 111-98-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C3HCC6 C3HCGF3N C4GC6F3N C4HC6-O4F C16H12 m.w. 226 m.w. 226 m.w. 226 m.w. 226 m.w. 226 C4H1N C3H16N C4H16N C4H16N C4H16N C4H16N C4H16N C4H16N C4H16N C4H16N C4H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N C3H16N	1.9 NR 1.1 0.57 1.3 0.71 0.84 2.6 0.87 NR 0.2	+ + + + +++	1.3 NR 0.9 0.9 0.48 0.9 0.7 1 1.3 4 0.61 0.74 2.0 0.8 1.5 ~70 0.20	+ + + ++++ +++++	0.43 0.43 0.4 0.35 0.5 1.4 0.8	* * * * * *** *	<10 11.5 <9.4 8.8 8.01 9.04 7.73 9.6 8.81 8.23 ~10.5	ne ne 0.1 5 11 11 5 ne ne 25 5 10 5 ne ne
Dichloro-1,1,1- trifluoroethane, 2,2- Dichloro-2,4,6- trifluoropyridine, 3,5- Dichlorvos * Dicydopentadiene Diesel Fuel #2 (Automotive) Diesel Fuel #2 (Automotive) Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethylaufide Dimethylacetamide, N,N- Dimethylacetamide Dimethylacetamid	ponar, O.O-dimethyl O- historovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS e Methyl ether IEA IEA MH	306-83-2 1737-83-5 82-73-7 77-73-6 68334-30-5 68334-30-5 104-78-9 141-05-9 111-98-6 108-83-8 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₂ HCl ₂ F ₃ N C ₄ H ₁ Cl ₂ O ₄ P C ₁₀ H ₁₂ m.w. 220 m.w. 220 m.w. 220 m.w. 216 C ₄ H ₁₁ N C ₇ H ₁₈ N ₂ C ₆ H ₁₂ O ₄ C ₆ H ₁₄ O ₅ C ₆ H ₁₆ O ₅ C ₆	0.57 1.3 0.71 0.84 2.8 0.87 NR 0.2	+ + + ++++	0.9 0.9 0.48 0.7 1 1.3 4 0.81 0.74 2.0 0.8 1.5 ~70 0.20	+ + + ++++ +++++	0.43 0.43 0.4 0.35 0.5 1.4 0.8	* * * * * *** *	9.04 7.73 9.6 8.23 ~10.5	ne 0.1 5 11 11 5 ne ne 25 5 0.5 10 5 ne ne
trifluoroethane, 2.2- Dichlorvoz, 4,8- intrifluoropyridine, 3,5- Dichlorvos Vapa Dicyclopentadiene Diesel Fluel Diesel Fluel #2 (Automotive) Diethylamine Dimethylamine Disopropylamine Disopropylamine Disopropylamine Disopropylamine Disopropylamine Disopropylamine Disopropylamine Disopropylamine Dimethylamine Dimethylamine Dimethylamine Dimethyl ether Dimethyl ether Dimethyl ether Dimethylethylamine Dimethyl ether Dimethyl ether Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfoxide Dimethyl su	ponar, O.O-dimethyl O- historovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS e Methyl ether IEA IEA MH	1737-93-5 62-73-7 77-73-6 68334-30-5 109-89-7 104-78-9 111-98-8 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₆ Cl ₂ F ₅ N C ₆ H ₁ Cl ₂ O ₆ P C ₁₆ H ₁₂ m.w. 228 m.w. 228 m.w. 228 m.w. 216 C ₆ H ₁ N C ₇ H ₁ N C ₇ H ₁ N C ₇ H ₁ N C ₈ H ₁ O ₆ C ₈ H ₁ O ₇ C ₈ H ₁ N C ₉ H ₂ O ₇ C ₈ H ₁ N C ₉ H ₂ N C ₉ H	0.57 1.3 0.71 0.84 2.6 0.87 NR 0.2	+ + + + + + + + + + + + + + + + + + + +	0.9 0.8 0.9 0.7 1 1.3 4 0.61 0.74 2.0 0.8 1.5 ~70 0.20	+ + ++++ ++++ +	0.43 0.43 0.4 0.35 0.5 1.4 0.8	+ + + + ++++ +	\$8.8 8.01 9.04 7.73 9.6 8.81 8.23 ~10.5	ne 0.1 5 11 5 ne ne 25 5 0.5 10 5 ne
Dichloro-2,4,6- trifluoropyridine, 3,5- Dichloros' dich Dicyclopentadiene Diesel Fuel #2 (Automotive) Diesel Fuel #2 (Automotive) Diesthylamine, 3- Diethylamine, 3- Dischylamine, 3- Dimethylactamine, 3- Dimethylactamine, 3- Dimethyl disulfide, 3- Dimethyl disulfide, 3- Dimethyl disulfide, 3- Dimethyl sulfate, 3- Dimethyl sulfate, 3- Dimethyl sulfate, 3- Dimethyl sulfoxide, 3- Dimethyl sulfoxide, 3- Dischylamine, 1,4- Dioxolane, 1,3- Dowtherm, 4 see Therminol® 1 Dischylorophydrin, 5- Ethylorophydrin, 5- E	pona; 0,0-dimethyl Q- histrovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2,2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS Methyl ether IEA IF MH IMP, methyl phosphonic acid	62-73-7 77-73-6 68:334-30-5 68:334-30-5 104-78-9 111-98-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₀ H ₁ C ₀ O ₀ P C ₁₀ H ₁₂ m.w. 216 m.w. 216 m.w. 216 G.H ₁ N G ₁ H ₁ N ₂ G ₂ H ₁ O ₃ G ₄ H ₁ O ₃ G ₄ H ₁ O ₃ G ₄ H ₂ O ₃ G ₄ H ₂ O ₃ G ₄ H ₃ N G ₃ H ₃ NO G ₃ H ₃ NO G ₃ H ₃ NO	0.57 1.3 0.71 0.84 2.8 0.87 NR 0.2	+ + + + + + + + + + + + + + + + + + + +	0.9 0.48 0.9 0.7 1 1.3 4 0.81 0.74 2.0 0.8 1.5 ~70 0.20	+ ++++ +++++	0.43 0.4 0.35 0.5 1.4 0.8	+ + + + +	9.04 7.73 9.6 8.81 8.23 ~10.5	5 11 11 5 ne ne 25 5 0.5 10 5 ne ne
trifluoropyridine, 3,5- Dichlorvos * Vap Diesel Fuel #2 (Automotive) Diethylamine Diethylamine, 3- Diethylbenzene See Disbylbenzene See Disbylbenzene Diglyme Disbylbenzene Diglyme Disbylsulfide See Disbylyl ketone Dissobutyl ketone Dimethylactamine Dimethyl carbonate Dimethyl daulfide Dimethyl daulfide Dimethyl sulfide Dimethyl sulfoxide Dimethyl sulfide Dimethyl sulfoxide	pona; 0,0-dimethyl Q- histrovinyl phosphate PD, Cyclopentadiene dimer e Dowtherm J e Ethyl sulfide e Methoxyethyl ether 3K, 2,2-dimethyl-4-heptanone tene dimer tabonic acid dimethyl ester IDS Methyl ether IEA IF MH IMP, methyl phosphonic acid	62-73-7 77-73-6 68:334-30-5 68:334-30-5 104-78-9 111-98-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₀ H ₁ C ₀ O ₀ P C ₁₀ H ₁₂ m.w. 216 m.w. 216 m.w. 216 G.H ₁ N G ₁ H ₁ N ₂ G ₂ H ₁ O ₃ G ₄ H ₁ O ₃ G ₄ H ₁ O ₃ G ₄ H ₂ O ₃ G ₄ H ₂ O ₃ G ₄ H ₃ N G ₃ H ₃ NO G ₃ H ₃ NO G ₃ H ₃ NO	0.57 1.3 0.71 0.84 2.8 0.87 NR 0.2	+ + + + + + + + + + + + + + + + + + + +	0.9 0.48 0.9 0.7 1 1.3 4 0.81 0.74 2.0 0.8 1.5 ~70 0.20	+ ++++ +++++	0.43 0.4 0.35 0.5 1.4 0.8	+ + + + +	9.04 7.73 9.6 8.81 8.23 ~10.5	5 11 11 5 ne ne 25 5 0.5 10 5 ne ne
Dicyclopentadiene Dicyclopentadiene Dicyclopentadiene Diesel Fuel #2 (Automotive) Diesel Fuel #2 (Automotive) Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethylamine Diethyls sulfide See Disobutyl ketone Disobutyl ketone Disobutyl ketone Disobutyl ketone Dimethylacetamine Dimethylacetamine Dimethylacetamine Dimethyl carbonate Dimethyl disulfide Dimethyl disulfide Dimethyl disulfide Dimethyl methylphosphonate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfide See Dimethyl sulfide See Dimethyl sulfide See Dimethyl sulfide See Dimethyl sulfoxide Dimethyl sul	e Dowtherm J E Ethyl sulfide Methoxyethyl ether K, 2,2-dimethyl 4-heptanone lene dimer LA Toonic acid dimethyl ester LOS Methyl ether LOS LOS LOS LOS LOS LOS LOS LO	77-73-6 66334-30-5 68334-30-5 109-89-7 104-78-9 111-96-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₁₀ H ₁₂ m.w. 228 m.w. 218 c.H ₁₁ N c ₇ H ₁₆ N ₂ C ₆ H ₁₂ O ₄ C ₆ H ₁₆ O ₃ C ₆ H ₁₆ O ₃ C ₆ H ₁₆ O ₃ C ₆ H ₁₆ N C ₆ H ₆ O ₃ C ₇ H ₆ N C ₇ H ₆ O ₃ C ₇ H ₆ S ₂ C ₈ H ₁ N C ₇ H ₆ O ₃ C ₇ H ₆ S ₂ C ₈ H ₁ N C ₇ H ₆ S ₂	0.71 0.84 2.6 0.87 NR 0.2	+ + + + + + +	0.48 0.9 0.7 1 1.3 4 0.61 0.74 2.0 0.8 1.5 ~70 0.20	++++ ++++ +	0.35 0.5 1.4 0.8	+ + + + +	9.04 7.73 9.6 8.81 8.23 ~10.5	5 11 11 5 ne ne 25 5 0.5 10 5 ne ne
Diesel Fuel #2 (Automotive) Diesel Fuel #2 (Automotive) Diesel Fuel #2 (Automotive) Diesel Fuel #2 (Automotive) Diesel Fuel #3 (Automotive) Diesel Fuel #4 (Automotive) Diesel Fuel #4 (Automotive) Diesel Fuel #4 (Automotive) Diesel Fuel #4 (Automotive) Diesel Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fu	e Dowtherm J Ethyl sulfide I Methoxyethyl ether IK, 2.2-dimethyl-4-heptanone tene dimer IA Toonic acid dimethyl ester IDS I Methyl ether IER III III III III III III III III III	68334-30-5 68334-30-5 109-89-7 104-78-9 141-05-9 111-98-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-0 624-92-0 598-56-1 68-12-2 57-14-7	m.w. 228 m.w. 228 m.w. 218 m.w. 2	0.71 0.84 2.6 0.87 NR 0.2	+ + + + + + +	0.8 0.7 1 1.3 4 0.61 0.74 2.0 0.8 1.5 ~70 0.20	++++++++	0.35 0.5 1.4 0.8	+ + + + +	9.04 7.73 9.6 8.81 8.23 ~10.5	11 11 5 ne ne 25 5 0.5 10 5 ne
Diesel Fuel #2 (Automotive) Diethylamine Diethylaminopropytamine, 3- Diethylbenzene Diethylamideate Diethyl sulfide Disopropytamine Disopropytamine Disopropytamine Disopropytamine Disopropytamine Dimethylacetamide, N,N- Dimethylacetamide Dimethylamine Di	e Ethyl sulfide I Methoxyethyl ether IK, 2.2-dimethyl-4-heptanone Iene dimer IA Toonic acid dimethyl ester IDS I Methyl ether IEN III III III III III III III III III	88334-30-5 109-89-7 104-78-9 141-05-9 111-96-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	m.w. 216 C ₄ H ₁₁ N C ₇ H ₈ N ₂ C ₆ H ₁₂ O ₄ C ₆ H ₁₄ O ₅ C ₆ H ₁₆ O C ₆ H ₁₆ O C ₆ H ₁₆ O C ₆ H ₁₆ O C ₆ H ₁₀ O C ₆ H ₁₀ O C ₆ H ₁₀ O C ₆ H ₁₀ O C ₇ H ₁₀ O C ₇ H ₁₀ O C ₇ H ₁₀ O	0.71 0.84 2.6 0.87 NR 0.2	+ + + + +	0.7 1 1.3 4 0.61 0.74 2.0 0.8 1.5 ~70 0.20	++ ++++ +	0.35 0.5 1.4 0.8	+++++	9.04 7.73 9.6 8.81 8.23 ~10.5	11 5 ne ne 25 5 0.5 10 5 ne
Diethylamine Diethylaminopropylamine, 3- Diethylaminopropylamine, 3- Diethylaminopropylamine, 3- Diethylaminopropylamine, 3- Diethylamine Diethylamine Diethylamine District D	e Ethyl sulfide I Methoxyethyl ether IK, 2.2-dimethyl-4-heptanone Iene dimer IA Toonic acid dimethyl ester IDS I Methyl ether IEN III III III III III III III III III	109-89-7 104-78-9 141-05-9 111-96-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-57-14-7	C4H1N C7H16N2 C6H14O3 C6H14O3 C6H19O C6H19N C4H4O2 C4H4NO C3H5O3 C3H5O3 C3H5O3 C4H1N C4H4O3	0.71 0.84 2.6 0.87 NR 0.2	+ + + + +	1 1.3 4 0.61 0.74 2.0 0.8 1.5 ~70 0.20	+ ++++ +	0.35 0.5 1.4 0.8	+++++	9.04 7.73 9.6 8.81 8.23 ~10.5	5 ne ne 25 5 0.5 10 5 ne ne
Diethylamine Diethylaminopropylamine, 3- Diethylbenzene Diethylmaleate Diethylmaleate Diglyme See Diglyme See Diglyme See Diglyme See Disobutyl ketone Disobropylamine Diketene Diketene Diketene Dimethyl carbonate Dimethyl carbonate Dimethyl carbonate Dimethyl disulfide Dimethyl ether Dimethyl ether Dimethyl ether Dimethyl ether Dimethyl ether Dimethyl sulfide D	e Ethyl sulfide I Methoxyethyl ether IK, 2.2-dimethyl-4-heptanone Iene dimer IA Toonic acid dimethyl ester IDS I Methyl ether IEN III III III III III III III III III	104-78-9 141-05-9 111-96-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 597-14-7	C ₂ H ₁₈ N ₂ C ₆ H ₁₂ O ₄ C ₆ H ₁₆ O ₅ C ₆ H ₁₉ O C ₆ H ₁₉ O C ₆ H ₁₉ N C ₆ H ₆ O ₅ C ₆ H ₆ N C ₆ H ₆ O ₅ C ₇ H ₆ O ₇ C ₇ H ₇ O ₇	0.84 2.6 0.87 NR 0.2	+ + + + +	0.61 0.74 2.0 0.8 1.5 ~70 0.20	+++++	0.5 1.4 0.8	+ + + +	9.04 7.73 9.6 8.81 8.23 ~10.5	ne 25 5 0.5 10 5 ne ne
Diethylmenzene Diethylmaleate Diethylmaleate Diethyl sulfide Displyme See Displyme See Displyme Disply	e Ethyl sulfide I Methoxyethyl ether IK, 2.2-dimethyl-4-heptanone Iene dimer IA Toonic acid dimethyl ester IDS I Methyl ether IEN III III III III III III III III III	141-05-9 111-96-6 108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-50-1 68-12-2 57-14-7	C ₀ H ₁₂ O ₄ C ₀ H ₁₄ O ₅ C ₀ H ₁₆ O ₅ C ₀ H ₁₆ O ₇ C ₀ H ₁₆ O ₇ C ₀ H ₁₆ O ₇ C ₀ H ₀ NO	0.84 2.6 0.87 NR 0.2	+ + + + +	4 0.81 0.74 2.0 0.8 1.5 ~70 0.20	++++	0.5 1.4 0.8	+ + + +	7.73 9.6 8.81 8.23 ~10.5	25 5 0.5 10 5 ne
Diethylmenzene Diethylmaleate Diethylmaleate Diethyl sulfide Displyme See Displyme See Displyme Disply	e Ethyl sulfide I Methoxyethyl ether IK, 2.2-dimethyl-4-heptanone Iene dimer IA Toonic acid dimethyl ester IDS I Methyl ether IEN III III III III III III III III III	111-98-6 108-83-9 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₀ H ₁₂ O ₄ C ₀ H ₁₄ O ₅ C ₀ H ₁₆ O ₅ C ₀ H ₁₆ O ₇ C ₀ H ₁₆ O ₇ C ₀ H ₁₆ O ₇ C ₀ H ₀ NO	0.84 2.6 0.87 NR 0.2	+ + + + +	4 0.81 0.74 2.0 0.8 1.5 ~70 0.20	++++	0.5 1.4 0.8	+ + + +	7.73 9.6 8.81 8.23 ~10.5	25 5 0.5 10 5 ne ne
Diethylmaleate Diethyl sulfide see Diethyl sulfide See Disobutyl ketone DIB Disopropylamine Diketene Kete Dimethylacetamide, N,N- Dimethyl carbonate Dimethyl carbonate Dimethyl disulfide Dimethyl ether Dimethyl ether Dimethyl ether Dimethyl ether Dimethyl sulfide Dimethyl sulfi	e Ethyl sulfide I Methoxyethyl ether IK, 2.2-dimethyl-4-heptanone Iene dimer IA Toonic acid dimethyl ester IDS I Methyl ether IEN III III III III III III III III III	111-98-6 108-83-9 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₆ H ₁₄ O ₉ C ₆ H ₁₆ O C ₆ H ₁₆ N C ₄ H ₄ O ₂ C ₄ H ₄ NO C ₂ H ₇ N C ₅ H ₆ O ₃ C ₂ H ₇ S ₂ C ₄ H ₁₁ N C ₅ H ₆ NO	0.84 2.6 0.87 NR 0.2	+ + + + +	0.61 0.74 2.0 0.8 1.5 ~70 0.20	++++	0.5 1.4 0.8	+ + + +	7.73 9.6 8.81 8.23 ~10.5	25 5 0.5 10 5 ne ne
Diethyl sulfide See Disobutyl ketone Disopropylamine Diketene Ket Dimethylacetamide, N.N- Dimethylacetamide, N.N- Dimethylamine Dimethyl disulfide Dimethylethylamine Dimethylethylamine Dimethylethylamine Dimethylethylamine Dimethylethylamine Dimethylydrazine, 1,1- Dimethyl methylphosphonate Dimethyl sulfide Dim	e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer thonic acid dimethyl ester IDS E Methyl ether EA IF MH IMP, methyl phosphonic acid	111-98-6 108-83-9 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₆ H ₁₄ O ₉ C ₆ H ₁₆ O C ₆ H ₁₆ N C ₄ H ₄ O ₂ C ₄ H ₄ NO C ₂ H ₇ N C ₅ H ₆ O ₃ C ₂ H ₇ S ₂ C ₄ H ₁₁ N C ₅ H ₆ NO	0.84 2.6 0.87 NR 0.2	+ + + + +	0.74 2.0 0.8 1.5 ~70 0.20	++++	0.5 1.4 0.8	+ + + +	7.73 9.6 8.81 8.23 ~10.5	25 5 0.5 10 5 ne ne
Diglyme See Disobutyl ketone DIB Disobutyl ketone Disebutyl ketone Disebutyl carbonate Dimethyl carbonate Dimethyl carbonate Dimethyl disulfide Dimethyl ether See Dimethyl fermamide, N.N- Dimethyl hydrazine, 1,1- Dimethyl hydrazine, 1,1- Dimethyl sulfate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Disoxane, 1,3- Dowtherm A see Therminol® Disoutherm A see Therminol® Dowtherm A see Therminol®	e Methoxyethyl ether 3K, 2.2-dimethyl-4-heptanone tene dimer thonic acid dimethyl ester IDS E Methyl ether EA IF MH IMP, methyl phosphonic acid	108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₂ H ₁₉ O C ₄ H ₁₉ N C ₄ H ₄ O ₂ C ₄ H ₆ NO C ₂ H ₇ N C ₅ H ₆ O ₅ C ₂ H ₆ S ₂ C ₄ H ₁₁ N C ₅ H ₇ NO	0.84 2.6 0.87 NR 0.2	+ + + + +	0.74 2.0 0.8 1.5 ~70 0.20	++++	0.5 1.4 0.8	+ + + +	7.73 9.6 8.81 8.23 ~10.5	5 0.5 10 5 ne ne
Disobutyl ketone Disopropylamine Diketene Dimethylacetamide, N,N- Dimethylacetamide, N,N- Dimethylacetamide Dimethyl carbonate Dimethyl carbonate Dimethyl disulfide Dimethyl disulfide Dimethyl disulfide Dimethylethylamine Dimethylforamide, N,N- Dimethylforamide, N,N- Dimethylforamide, N,N- Dimethyl sulfate Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Disoxane, 1,3- Dowtherm A see Therminol® Dowtherm J (197% Diethylbenzene) DS-108F Wipe Solvent Epichlorohydrin ECI- L-cl	3K, 2.2-dimethyl-4-heptanone tene dimer IA rbonic acid dimethyl ester IDS E Methyl ether IEA IF MH IMP, methyl phosphonic acid	108-83-8 108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₂ H ₁₉ O C ₄ H ₁₉ N C ₄ H ₄ O ₂ C ₄ H ₆ NO C ₂ H ₇ N C ₅ H ₆ O ₅ C ₂ H ₆ S ₂ C ₄ H ₁₁ N C ₅ H ₇ NO	0.84 2.6 0.87 NR 0.2	+ + + + +	0.74 2.0 0.8 1.5 ~70 0.20	++++	0.5 1.4 0.8	+ + + +	7.73 9.6 8.81 8.23 ~10.5	5 0.5 10 5 ne ne
Disopropiyamine Diketene Kete Diketene Diketene Diketene Dimethylarvine Dimethylarvine Dimethylarvine Dimethylarvine Dimethyl disulfide Dimethyl disulfide Dimethyl ether see Dimethyl ether Divethylformarnide, N,N- Dimethylformarnide, N,N- Dimethylformarnide, N,N- Dimethylforphosphonate Dimethyl sulfate Dimethyl sulfide Divaxne, 1,4- Dioxolane, 1,3- Dowtherm A, 3- Dowtherm A, 3- Dowtherm B, 4- Divethylberszene DS-108F Wipe Solvent Ethyl Epichlorohydrin ECI- Elichlorohydrin	tene dimer tA rbonic acid dimethyl ester IDS Methyl ether IEA IF MH MH MH, methyl phosphonic acid	108-18-9 674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-58-1 68-12-2 57-14-7	C ₈ H ₁₉ N C ₄ H ₄ O ₂ C ₄ H ₄ NO C ₂ H ₅ N C ₅ H ₆ O ₅ C ₂ H ₆ S ₂ C ₄ H ₁₁ N C ₅ H ₇ NO	0.84 2.6 0.87 NR 0.2	+ + + + +	0.74 2.0 0.8 1.5 ~70 0.20	++++	0.5 1.4 0.8	+ + + +	7.73 9.6 8.81 8.23 ~10.5	5 0.5 10 5 ne ne
Dikelene Kett Dimethylacetamide, N,N- Dimethylacetamide, N,N- Dimethyl carbonate Dimethyl disulfide Dimethyl ether Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Discoane, 1,3- Dowtherm A see Therminol8 * Dowtherm A [UT/N Dilethylberozene] DS-108F Wipe Solvent Ethyl Proj Epichlorohydrin ECI- 1-cl	IA rbonic acid dimethyl ester IDS Methyl ether IEA IF IMH IMP, methyl phosphonic acid	674-82-8 127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₄ H ₄ O ₂ C ₄ H ₅ NO C ₂ H ₅ N C ₅ H ₆ O ₅ C ₂ H ₆ S ₂ C ₄ H ₁₁ N C ₅ H ₇ NO	2.6 0.87 NR 0.2	+ + + +	2.0 0.8 1.5 ~70 0.20	++ +	1.4 0.8 1.7	+ +	9.6 8.81 8.23 ~10.5	0.5 10 5 ne ne
Dimethylacetamide, N,N- Dimethylamine Dimethyl carbonate Dimethyl carbonate Dimethyl disulfide Dimethyl disulfide Dimethyl ether See Dimethyl sulfore Dimethylhydrazine, 1,1- Dimethylhydrazine, 1,1- Dimethyl sulfate Dimethyl sulfide Dimethyl sulfide Dimethyl sulfoide Dimethyl sulfoi	IA rbonic acid dimethyl ester IDS Methyl ether IEA IF IMH IMP, methyl phosphonic acid	127-19-5 124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₄ H ₄ NO C ₂ H ₃ N C ₃ H ₆ O ₅ C ₂ H ₆ S ₂ C ₄ H ₁ N C ₃ H ₇ NO	0.87 NR 0.2	+ + +	0.8 1.5 ~70 0.20	+	1.7	+	8.81 8.23 ~10.5	10 5 ne ne
Dimethylamine Dimethyl carbonate Dimethyl dsuffide Dimethyl dsuffide Dimethyl ether Dimethyl ether Dimethylydnine Dimethylfydnamie Dimethylfydnamie Dimethylfydnamie Dimethyl suffide Dimethyl sulfate Dimethyl sulfate Dimethyl sulfoxide Dimethyl sulfoxide Dioxane, 1,4- Dioxolane, 1,3- Dowtherm A see Therminol® Dowtherm A see Therminol® Disentyl sulfoxide Disentyl sulfoxide Dioxane, 1,3- Dowtherm A see Therminol® Disentyl sulfoxide Disentyl sulfoxid	rbonic acid dimethyl ester IDS • Methyl ether IEA IF MH IMP, methyl phosphonic acid	124-40-3 616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₃ H ₃ N C ₃ H ₆ O ₃ C ₃ H ₆ S ₂ C ₄ H ₁₁ N C ₃ H ₃ NO	NR 0.2 1.1	++	1.5 ~70 0.20	+	1.7	+	8.23 ~10.5	5 ne ne
Dimethyl carbonate Dimethyl disulfide Dimethyl disulfide Dimethyl disulfide Dimethylethylamine Dimethylethylamine Dimethylindrazine, 1,1- Dimethyl methylphosphonate Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Disvane, 1,3- Dioxonlane, 1,3- Dowtherm A see Therminol® Dowtherm J (197% Diethylbenzene) DS-108F Wipe Solvent Epichlorohydrin ECI- 1-cl	IDS e Methyl ether IEA IF MIH IMP, methyl phosphonic acid	616-38-6 624-92-0 598-56-1 68-12-2 57-14-7	C ₂ H ₆ O ₃ C ₂ H ₆ S ₂ C ₄ H ₁₁ N C ₃ H ₆ NO	1.1		~70 0.20				~10.5	ne ne
Dimethyl disulfide DMI omethyl ether see DMI Dimethylethylamine Dimethylformamide, N,N-Dimethylformamide, N,N-Dimethylformamide, N,N-Dimethylformamide, N,N-Dimethylformathylf	IDS e Methyl ether IEA IF MIH IMP, methyl phosphonic acid	624-92-0 598-56-1 68-12-2 57-14-7	C ₂ H ₆ S ₂ C ₄ H ₁₁ N C ₂ H ₂ NO	1.1		0.20					ne
Dimethyl ether Dimethylethylamine DMI Dimethylformamide, N,N-Dimethylformamide, N,N-Dimethylformamide, N,N-Dimethylformamide, N,N-Dimethylformamide, N,N-Dimethylformamide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfide Dimethyl sulfoxide DM: Dioxane, 1,4-Dioxolane, 1,3-Dowtherm A see Therminol8 Dowtherm A see Therminol8 Dowtherm A see Therminol8 Dowthern A see Therminol8 Dowth	Methyl ether IEA IF MH IMP, methyl phosphonic acid	598-56-1 68-12-2 57-14-7	C ₄ H ₁₁ N C ₃ H ₂ NO	1.1		-	+	0.21	+	7.4	- C- (C- (C- (C- (C- (C- (C- (C- (C- (C-
Dimethylethylamine DMI Dimethylformarnide, N,N- Dimethylformarnide, N,N- Dimethylformarnide, N,N- Dimethyl surfate Dimethyl sulfate Dimethyl sulfide see Dimethyl sulfide Dimethyl sulfide Dioxane, 1,4- Dioxolane, 1,3- Dowtherm J (97% Diethylbenzene) DS-108F Wipe Solvent Ethy Prog	IEA IF IMH IMP, methyl phosphonic acid	68-12-2 57-14-7	C ₃ H ₇ NO								
Dimethylformamide, N.N- Dimethylfydrazine, 1,1- Dimethyl sulfate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfoxide Dixane, 1,4- Dixoxolane, 1,3- Dowtherm A see Therminol®* Dowtherm (197% Diethylberozene) DS-108F Wipe Solvent Epichlorohydrin ECI-1-cl	IF MH IMP, methyl phosphonic acid	68-12-2 57-14-7	C ₃ H ₇ NO					1000			
Dimethyl methylphosphonate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfate Dimethyl sulfoxide Discane, 1,3- Dioxane, 1,3- Dowtherm A see Therminol® Dowtherm J (197% Diethylbenzene) DS-108F Wipe Solvent Ethyl Proj	MH IMP, methyl phosphonic acid	57-14-7			-	1.0	+	0.9	+	7.74	~3
Dimethyl methylphosphonate dim dim dim Dimethyl sulfate Dimethyl sulfide See Dimethyl sulfoxide Dimethyl sul	IMP, methyl phosphonic acid			0.7	+	0.7	+	8.0	+	9.13	10
Dimethyl sulfate Dimethyl sulfate Dimethyl sulfoxide Dimethyl sulfoxide Dimethyl sulfoxide Dixoxane, 1,4- Dixoxolane, 1,3- Dowtherm A see Therminol® Dowtherm A see Therminol® DS-108F Wipe Solvent Epichlorohydrin ECI-			C ₂ H ₆ N ₂	contra-		0.8	+	8.0	+	7.28	0.01
Dimethyl sulfide see Dimethyl sulfoxide DM Dioxolane, 1,4- Dioxolane, 1,3- Dioxolane, 1,3- Eth Dowthern A see Therminol® * Dowthern J (97% Diethylbenzene) DS-108F Wipe Solvent Eth Prog Epichlorohydrin Epichlorohydrin ECH 1-ch 1-ch	nethyl ester	758-79-8	C ₃ H ₀ O ₃ P	NR	+	4.3	+	0.74	+	10.0	ne
Dimethyl sulfoxide Dioxane, 1,4- Dioxolane, 1,3- Diowthern A see Thermino® 107% Diethylberozens) DS-108F Wipe Solvent Ethy Proj Epichlorohydrin ECH		77-78-1	C2H6O4S	~23		~20	+	2.3	+		0.1
Dioxané, 1,4- Dioxolane, 1,3- Dioxolane, 1,4-	Methyl sulfide										
Dioxolarie, 1,3- Dowthern A see Therminol® * Dowthern J (07% Diethylbertzene) DS-108F Wipe Solvent Ethy Proj Epichlorohydrin ECH	ISO, Methyl sulfoxide	67-68-5	C2H6OS			1.4	+			9.10	ne
Dowtherm A see Therminol® * Dowtherm J (97% Diethylbenzene) DS-108F Wipe Solvent Ethy Prog Epichlorohydrin ECH 1-ch		123-91-1	CaHaO2			1.3				9.19	25
Dowtherm J (97% Diethylbenzene) DS-108F Wipe Solvent Ethy Proj Epichlorohydrin ECH 1-ch	ylene glycol formal	646-06-0	C ₉ H ₉ O ₂	4.0	+	2.3	+	1.6	+	9.9	20
DS-108F Wipe Solvent Ethy Proj Epichlorohydrin ECH 1-ch											
DS-108F Wipe Solvent Ethy Proj Epichlorohydrin ECH 1-ch		25340-17-4	ConHos			0.5					
Epichlorohydrin ECH 1-ch	v/ lactate/Isopar H/	97-64-3	m.w. 118	3.3	+	1.6	+	0.7	+		ne
Epichlorohydrin ECH 1-ch	poxypropanol ~7:2:1	64742-48-9									
1-d	6 (a) T	1569-01-3									
1-d	H Chloromethyloxirane,	106-89-8	C ₂ H ₅ CIO	~200	+	8.5	+	1.4	+	10.2	0.5
	hloro2,3-epoxypropane		Seventa.								
Ethane		74-84-0	CoHe.			NR	+	15	+	11.52	ne
	yl alcohol	64-17-5	C₂H₀O			10	+	3.1	+	10.47	1000
	A. Mpnoethanolamine	141-43-5	C ₂ H ₂ NO	5.6	-	1.6	4	0.1		8.96	3
	wene	74-85-1	C ₂ H ₄	41.0	-	9	+	4.5	+	10.51	ne
	ryl cellosolve	110-80-5	C4H10O2			1.3	7	7.0	*	9.6	5
Consyculation, 2" Luly	y celosove	110-00-0	O# 11002			1				0.0	~
Ethyl acetate		141-78-6	C ₄ H ₆ O ₂			4.6	+	3.5		10.01	400
Ethyl acetoacetate		141-97-9	CeH10O3	1.4	+	1.2	+	1.0	+	<10	ne
Ethyl acrylate		140-88-5	CsHsO2			24	+	1.0	+	<10.3	5
Ethylamine		75-04-7	C ₂ H ₂ N			0.8				8.86	5
Ethylbenzene		100-41-4	GeH ₁₀	0.52	+	0.52	+	0.51	+	8.77	100
	yl octanoate	106-32-1	C10H20O2		+	0.52	+	0.51	+	- C. I	100
	-Ethanediamine:	107-15-3	C ₂ H ₈ N ₂	0.9	+	0.8	+	1.0	-	8.6	10
		107-10-0	~71 till 45	u.e	-	0,0	-	1.4	50	0,0	
The second secon						- Artes	100	8	4	10.16	CHAR
Ethylene glycol, Acrylate 2-by	-Diaminoethane -Ethanediol	107-21-1	C ₀ H ₈ O ₂			16				\$10.6	PATRICE.

RAE Systems Inc. 3775 N. First St., San Jose, CA 95134-1708 US/ Phone: +1.868.723.8823 Email: raesales@raesystems.com

TABLE 1. (cont) Correction Factors and Ionization Energies

SOP: 2139 PAGE: 15 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

6				Tech	ni	cal	N	ote		N-1(evised 12/	
Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	c	10.6	c	11.7	C	IE (Ev)	TWA
Ethylene glycol dimethyl ether	1,2-Dimethoxyethane, Monoglyme	110-71-4	C ₄ H ₁₀ O ₂	1.1		0.86		0.7		9.2	ne
Ethylene glycol monobutyl ether acetate	2-Butoxyethyl acetate	112-07-2	C _B H ₁₈ O ₃			1.3				≤10.6	
Ethylene glycol, monothio	mercapto-2-ethanol	60-24-2	C ₂ H ₆ OS			1.5				9.65	
Ethylene oxide	Oxirane, Epoxyethane	75-21-8	C ₂ H ₄ O			13	+	3.5	+	10.57	19
Ethyl ether	Diethyl ether	60-29-7	C ₄ H ₁₀ O			1.1	+	1.7	150	9.51	40
Ethyl 3-ethoxypropionate	EEP	763-69-9	C ₂ H ₁₄ O ₃	1.2	+	0.75	+				n
Ethyl formate		109-94-4	CaHaO2					1.9		10.61	10
Ethylhexyl acrylate, 2-	Acrylic acid 2-ethylhexyl ester	103-11-7	C11H2trO2			1.1	+	0.5	+		п
Ethylhexanol	2-Ethyl-1-hexanol	104-76-7	C8H ₁₈ O			1.9				≤10.6	
Ethylidenenarbomene	5-Ethylidene bicyclo(2,2,1)hept-2 ene		C9H12	0.4	+	0.39	+	0.34	+	≤8.8≥	n
Ethyl (S)-(-)-lactate see also DS-108F	Ethyl lactate, Ethyl (S)-(-)- hydroxypropionate	887-47-8 97-84-3	C ₅ H ₁₀ O ₅	13	+	3.2	+	1.6	+	~10	n
Ethyl mercaptan	Ethanethiol	75-08-1	C ₂ H _e S	0.60	+	0.56	+			9.29	0.
Ethyl sulfide	Diethyl sulfide	352-93-2	C ₄ H ₁₀ S	-4-11	313	0.5	+			8.43	n
Formaldehyde	Formalin	50-00-0	CH-O	NR	+	NR	+	1.6	4	10.87	CO.
Formamidé		75-12-7	CH ₃ NO			6.9	+	4		10.16	1
Formic acid		84-18-6	CH ₂ O ₂	NR	+	NR	+	9	+	11.33	
Furfural	2-Furaldehyde	98-01-1	C ₅ H ₄ O ₂			0.92	+	0.8	+	9.21	
Furfuryl alcohol		98-00-0	C ₅ H ₆ O ₂			0.80	+			<9.5	- 1
Gasoline #1		8006-61-9	m.w. 72			0.9	+				30
Gasoline #2, 92 octane Glutaraldehyde	1,5-Pentanedial, Glutaric dialdehyde	8006-61-9 111-30-8	m.w. 93 C ₅ H ₈ O ₂		+	1.0	++	0.5	+	-0	30 C0.0
Glycidyl methacrylate Halothane	2,3-Epoxypropyl methacrylate 2-Bromo-2-chloro-1,1,1-	106-91-2 151-67-7	C ₂ H ₁₀ O ₃ C ₂ HBrClF ₃	2.6	+	1.2	+	0.9	+	11.0	0. 5
ICFC-123 see 2,2-Dichloro-	1,1,1-trifluoroethane		78-0-13								
+CFC-123 see 2,2-Dichloro- +CFC-1418 see 1,1-Dichloro- +CFC-1428 see 1-Chloro-1, +CFC-134A see 1,1,1,2-Tetr +CFC-225 see Dichloropenta +CFC-225 see Dichloropenta +CFC-246 see Dichloropenta	nethane 1, 1, 1-trifluoroethane o-1-fluoroethane 1-difluoroethane rafluoroethane rifluoropropane	142-82-5	C ₇ H ₁₈	45	+	2.8	+	0.60	+	9.92	
HCFC-22 see Chlorodifluoror HCFC-123 see 2.2-Dichloro- HCFC-1418 see 1,1-Dichloro HCFC-142B see 1-Chloro-1, HCFC-134A see 1,1,1-2-Tet HCFC-225 see Dichloropenta Heptanol, 4- Heptanol, 4- Hexamethyldisilazane,	nethane 1,1,1-trifluoroethane 0-1-fluoroethane 1-difluoroethane rafluoroethane	142-82-5 589-55-9 989-97-3			++	2.8 1.3 0.2	+++	0.60 0.5 0.2	+++	9.92 9.61 -8.6	400 no
HCFC-123 see 2,2-Dichloro- HCFC-141B see 1,1-Dichloro- HCFC-143B see 1,0-Dichloro- HCFC-134A see 1,1,1,2-Tetr HCFC-225 see Dichloropenta- teptane, n- Heptane, 1-Heptane, 1,1,1,3,3,3-*	methane 1,1,1-trifluoroethane 1-1-fluoroethane 1-1-fluoroethane 1-1-fluoroethane afluoroethane afluoropropane Dipropylcarbinol HMDS	589-55-9 999-97-3	C ₇ H ₁₈ C ₇ H ₁₆ O C ₆ H ₁₀ NSi ₂	1.8	+	1.3	+	0.5	+	9.61 -8.6	n
HCFC-123 see 2,2-Dichloro- HCFC-141B see 1,1-Dichloro- HCFC-142B see 1-Chloro-1, HCFC-134A see 1,1,1,2-Tetr HCFC-225 see Dichloropenta- Heptane, n- Heptane, 1,1-1,1,3,3,3,3,4,1,1,1,3,3,3,4,1,1,1,3,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,3,3,4,1,1,1,1	methane 1,1,1-trifluoroethane 0-1-fluoroethane 1-tdifluoroethane rafluoroethane rafluoropropane Dipropylcarbinol	589-55-9 999-97-3 107-46-0	C ₂ H ₁₈ C ₂ H ₁₆ O ₂ C ₂ H ₁₆ OS ₁₂	1.8	+	1.3 0.2 0.27	+ + +	0.5 0.2 0.25	+ +	9.61 -8.6 9.64	n
HGFC-123 see 2,2-Dichloro- HGFC-141B see 1,1-Dichloro- HGFC-143B see 1,5-Dichloro-1, HGFC-134A see 1,1,1,2-Tetr HGFC-225 see Dichloropenta Heptane, n- Heptanol, 4- Hexamethyldisilazane, 1,1,1,3,3,3-1 Hexamethyldisiloxane Hexame, n-	methane 1,1,1-trifluoroethane 0-1-fluoroethane 1-difluoroethane afluoroethane afluoropropane Dipropylcarbinol HMDS	589-55-9 999-97-3 107-48-0 110-54-3	C ₂ H ₁₈ C ₂ H ₁₈ O C ₄ H ₁₆ OS ₂ C ₄ H ₁₆ OS ₂ C ₅ H ₁₆	0.33 350	+ + +	1.3 0.2 0.27 4.3	+ + + +	0.5 0.2 0.25 0.54	+ + + +	9.61 -8.6 9.64 10.13	n n 5
HCFC-123 see 2,2-Dichloro- HCFC-141B see 1,1-Dichloro- HCFC-142B see 1-Chloro-1, HCFC-134A see 1,1,1,2-Tetr HCFC-225 see Dichloropenta Heptane, n- Heptanol, 4- Hexamethyldisilazane, 1,1,1,3,3,3-* Hexamethyldisiloxane Hexane, n- Hexane, n-	methane 1,1,1-trifluoroethane 1-1-fluoroethane 1-1-fluoroethane 1-1-fluoroethane afluoroethane afluoropropane Dipropylcarbinol HMDS	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3	C ₂ H ₁₈ C ₂ H ₁₆ O C ₆ H ₁₀ NS ₁₂ C ₆ H ₁₆ OS ₃₂ C ₆ H ₁₄ O	1.8	+	1.3 0.2 0.27 4.3 2.5	+ + +	0.5 0.2 0.25	+ +	9.61 -8.6 9.64 10.13 9.89	n n 5
HCFC-123 see 2.2-Dichloro- HCFC-141B see 1Dichloro- HCFC-134A see 1.,1,2-Tetr HCFC-225 see Dichloropenta Heptane, n- Heptane), 4- Hexamethyldisilazane, 1,1,3,3,3- Hexamethyldisiloxane Hexane, n- Hexane, n- Hexane, 1- Hexane, 1-	methane 1,1,1-trifluoroethane 0-1-fluoroethane 1-difluoroethane rafluoroethane rafluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol	589-55-9 999-97-3 107-48-0 110-54-3	C ₂ H ₁₈ C ₂ H ₁₈ O C ₄ H ₁₆ OS ₂ C ₄ H ₁₆ OS ₂ C ₅ H ₁₆	0.33 350	+ + +	1.3 0.2 0.27 4.3	+ + + +	0.5 0.2 0.25 0.54	+ + + +	9.61 -8.6 9.64 10.13	n n 5
HCFC-123 see 2.2-Dichloro- HCFC-141B see 1.1-Dichloro- HCFC-143E see 1.5-Dichloro-1, HCFC-134A see 1,1,1,2-Tetr HCFC-225 see Dichloropenta Heptano, 4- Hexamethyldisilazane, H.1,1,3,3,3-* Hexamethyldisiloxane Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1-	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane affluoroethane affluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol luorobutyl ether	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3	CyHas CyHasO CyHasO CyHasOSig CyHasO CyHasO CyHasO CyHasO	0.33 350 9	+ + +	1.3 0.2 0.27 4.3 2.5 0.8	+ + + +	0.5 0.2 0.25 0.54	+ + + +	9.61 -8.6 9.64 10.13 9.89	n n 5 n 3
HCFC-123 see 2.2-Dichloro- HCFC-1418 see 1Dichloro- HCFC-144B see 1Chloro-1, HCFC-134A see 1.1,1,2-Tetr HCFC-225 see Dichloropenta Heptanol, 4- Heptanol, 4- Heptanol, 4- Hexamethyldislioxane Hexane, n- Hexane, n- Hexane, 1- HEXPID see Methyl nonafi- Histodear (Histo-Clear)	methane 1,1,1-trifluoroethane 0-1-fluoroethane 1-difluoroethane rafluoroethane rafluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol	589-55-9 989-97-3 107-46-0 110-54-3 111-27-3 582-41-6	CyHae CyHaeO CeHaeOSS2 CeHaeOSS2 CeHaeO CeHaeO	1.8 0.33 350 9	+ + + +	1.3 0.2 0.27 4.3 2.5 0.8	++ +++ +	0.5 0.2 0.25 0.54 0.55	+ + + +	9.61 -8.6 9.64 10.13 9.89 9.44	n n 5 n 3
HCFC-123 see 2.2-Dichloro- HCFC-141B see 1.1-Dichloro- HCFC-143E see 1.5-Dichloro-1, HCFC-134A see 1,1,1,2-Tetr HCFC-225 see Dichloropenta Heptano, 4- Hexamethyldisilazane, H.1,1,3,3,3-* Hexamethyldisiloxane Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1- Hexano, 1-	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane affluoroethane affluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol luorobutyl ether Limonene/com oil reagent	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3	CyH ₁₈ CyH ₁₈ O C ₆ H ₁₆ OS ₀ C ₆ H ₁₆ OS ₀ C ₆ H ₁₆ C ₆ H ₁₂ C ₆ H ₁₂ m.w. ~136 H ₄ N ₆	0.33 350 9	+ +++ +	1.3 0.2 0.27 4.3 2.5 0.8	+ + + + +	0.5 0.2 0.25 0.54 0.55	++ +++ +	9.61 -8.6 9.64 10.13 9.89	n n 5 n 3
HCFC-123 see 2.2-Dichloro- HCFC-141B see 1.1-Dichloro- HCFC-143E see 1.5-Horo-1, HCFC-134A see 1,1,1,2-Tetral- HCFC-125 see Dichloropental Heptane, n- Heptanol, 4- Hexamethyldisilazane, 1,1,1,3,3,3- Hexamethyldisiloxane Hexane, n- Hexanol, 1- Hexene, 1- HES-710D see Methyl nonafil Histoclear (Histo-Clear) Hydrazine 1	methane 1.1,1-trifluoroethane 1-1-fluoroethane 1-1-fluoroethane 1-1-fluoroethane rifluoroethane rifluoropthane fluoropropane Dipropylcarbinol HMDS HMDSX Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide	589-55-9 989-97-3 107-46-0 110-54-3 111-27-3 582-41-6	CyHae CyHaeO CeHaeOSig CeHaeOSig CeHaeO CeHaeO CeHaeO CeHaeO HaNa HaNa HaNa	1.8 0.33 350 9	+ +++ +	1.3 0.2 0.27 4.3 2.5 0.8	++ +++ +	0.5 0.2 0.25 0.54 0.55	++ +++ +	9.64 10.13 9.89 9.44	n n 5 n 3
IGFC-123 see 2.2-Dichloro- IGFC-1418 see 1Chloro- IGFC-134A see 1Chloro- IGFC-134A see 1.1,1,2-Tetr IGFC-225 see Dichloropenta Ieptane, n- Ieptanol, 4- Iexamethyldisilazane, 1,1,3,3,3- Iexamethyldisiloxane Iexane, n- Iexane, n-	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane affluoroethane affluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol luorobutyl ether Limonene/com oil reagent	589-55-9 989-97-3 107-48-0 110-54-3 111-27-3 582-41-6 302-01-2	CyH ₁₈ CyH ₁₈ O C ₆ H ₁₆ OS ₀ C ₆ H ₁₆ OS ₀ C ₆ H ₁₆ C ₆ H ₁₂ C ₆ H ₁₂ m.w. ~136 H ₄ N ₆	0.33 350 9 0.5 >8	+ +++	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6	++ ++++	0.5 0.2 0.25 0.54 0.55	++ +++ ++	9.61 -8.6 9.64 10.13 9.89 9.44 8.1 10.7	n n 5 n 3
iGFC-123 see 2.2-Dichloro- GFC-141B see 1.1-Dichloro- GFC-143E see 1.5-Dichloro- GFC-134A see 1.1,1,2-Tetr I-GFC-134A see 1.1,1,2-Tetr I-GFC-1	methane 1, 1, 1-trifluoroethane 1, 1, 1-trifluoroethane 1-difluoroethane 1-difluoroethane rafluoroethane rafluoropropane Dipropylcarbinol HMDS HMDS HMDSx Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3 592-41-6 302-01-2 1333-74-0	CyHee CyHeO CyHeOSig CeHeOSig CeHe CyHeO CyHeO CyHeO HNe HNe HNe	1.8 0.33 350 9 0.5 >8 NR	+ +++ ++ +	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6 NR	++ +++ ++ +	0.5 0.25 0.54 0.55 0.3 2.1 NR	++ +++ ++ +	9.61 -8.6 9.64 10.13 9.89 9.44 8.1 10.7 15.43	n
IGFC-123 see 2.2-Dichloro- IGFC-1418 see 1Chloro-1, IGFC-134A see 1Chloro-1, IGFC-134A see 1.1,1,2-Tetr IGFC-225 see Dichloropenta Ieptanol. 4- Ieptanol. 4- Ieptanol. 4- Ieptanol. 4- Ieptanol. 4- Ieptanol. 4- Ieptanol. 1- Ieptanol. 1-	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane rafluoroethane rafluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid	589-55-9 989-97-3 107-48-0 110-54-3 111-27-3 592-41-6 302-01-2 1333-74-0 74-90-8	C ₂ H ₁₈ C C ₃ H ₁₈ O C ₄ H ₁₈ OS ₅ C ₄ H ₁₈ OS ₅ C ₄ H ₁₈ O C ₅ H ₁₈ O C ₄ H ₁₈ O C ₅ H ₁₈ O C ₆ H ₁₈ O C ₆ H ₁₈ O C ₇	1.8 0.33 350 9 0.5 >8 NR	+ +++ ++ +	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6 NR NR -0.6 NR	++ +++ ++ +	0.5 0.25 0.54 0.55 0.3 2.1 NR	++ +++ ++ +	9.61 -8.6 9.64 10.13 9.89 9.44 8.1 10.7 15.43 13.6	n 5 n 3 0 0
HGFC-123 see 2.2-Dichloro- HGFC-1418 see 1Dichloro- HGFC-144B see 1Dichloro- HGFC-134A see 1.1,1,2-Tetr HGFC-225 see Dichloropenta- Heptanol, 4- Heptanol, 4- Heptanol, 4- Heptanol, 4- Heptanol, 4- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Heydragoic acid Hydrogen (Histo-Clear) Hydrazoic acid Hydrogen cyanide Hydrogen peroxide Hydrogen peroxide Hydrogen suffide	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane rafluoroethane rafluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3 592-41-6 302-01-2 1333-74-0 74-90-8 10034-85-2 7722-84-1 7783-08-4 27813-02-1	C ₂ H ₁₈ O C ₂ H ₁₈ O C ₆ H ₁₉ OS5 ₂ C ₄ H ₁₈ O C ₆ H ₁₈ O C ₆ H ₁₈ O C ₆ H ₁₈ O H ₁ N ₆ H ₂ N ₆ H ₂ N ₆ H ₂ N ₆ H ₃ N ₆ H ₄ N ₆ H ₅ N ₆ H	0.33 350 9 0.5 >8 NR	+ + + + + + + + + + + + + + + + + + + +	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6 NR NR -0.6	++ +++++++	0.5 0.25 0.54 0.55 0.3 2.1 NR	+++++++	9.61 -8.6 9.64 10.13 9.89 9.44 8.1 10.7 15.43 13.6 10.39	n n 5 n 3
HGFC-123 see 2.2-Dichloro- HGFC-141B see 1Chloro- HGFC-141B see 1Chloro-1, HGFC-134A see 1.,1,1,2-Tetr HGFC-134A see 1.,1,1,2-Tetr Heptane, n- Heptanol, 4- Hexamethyldisliazane, 1,1,1,3,3,3- Hexamethyldisliazane Hexane, n- Hexane, n- Hexane, 1- HEXENE, 1- HFE-7100 see Methyl nonafi- Histoclear (Histo-Clear) Hydrazoic acid Hydrogen eyanide Hydrogen syndide	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane rafluoroethane rafluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid	589-55-9 990-97-3 107-48-0 110-54-3 111-27-3 592-41-6 302-01-2 1333-74-0 74-90-8 10034-85-2 7722-84-1 7783-06-4 273-66-2	C ₇ H ₁₈ C C ₇ H ₁₉ O C ₆ H ₁₉ OS ₂ C ₆ H ₁₉ OS ₂ C ₆ H ₁₉ O C ₆ H ₁₂ M.W. ~138 H.N. H.N. HCN HCN HCN HCN HCN HCN HCN HCN HCN HCN	1.8 0.33 350 9 0.5 >8 NR NR NR	+ + + + + + + + + + + + + + + + + + + +	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6 NR NR NR 3.3 2.3	++ +++ ++++	0.5 0.2 0.25 0.54 0.55 0.3 2.1 NR NR 1.5 1.1	++ ++ ++ +++	9.61 -8.6 9.64 10.13 9.89 9.44 8.1 10.7 15.43 13.6 10.39 10.54	nn 55 nn 33 nn 000 nn C4.
HCFC-123 see 2.2-Dichloro- HCFC-1418 see 1Dichloro- HCFC-1418 see 1Chloro-1, HCFC-134A see 1.1,1,2-Tetr HCFC-225 see Dichloropenta Heptanol, 4- Heptanol, 4- Hexamethyldisliazane, 1.1,1,3,3,3- Hexamethyldisliazane Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hexanol, 1- Hydrazoic acid Hydrogen eyanide Hydrogen eyanide Hydrogen peroxide Hydrogen peroxide Hydrogen peroxide Hydroxypropyl methacrylate locine	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane rafluoroethane rafluoropthane filuoropropane Dipropylcarbinol HMDS HMDS Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid Hydriodic acid	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3 592-41-6 302-01-2 333-74-0 74-90-8 10034-85-2 7722-84-1 7783-06-4 27813-02-1 923-26-2 7563-56-2	CyHee CyHe CyH	1.8 0.33 350 9 0.5 >8 NR NR NR NR	+ + + + + + + + +	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6 NR NR NR 3.3 2.3	++ +++ ++ ++++ +	0.5 0.2 0.54 0.55 0.3 2.1 NR NR 1.5 1.1	++++++++++	9.61 -8.6 9.64 10.13 9.89 9.44 8.1 10.7 15.43 13.6 10.39 10.54 10.45	nn 55 nn 50 nn C4.
HCFC-123 see 2.2-Dichloro- HCFC-141B see 1Chloro- HCFC-141B see 1Chloro- HCFC-134A see 1.,1,2-Telr HCFC-125 see Dichloropenta Heptane, n- Heptanol, 4- Hexamethyldisilazane, 1,1,3,3,3- Hexamethyldisiloxane Hexane, n- Hexanol, 1- Hexanol, 1- Hexane, 1- HEXENE, 1- HESCHOR See Methyl nonafil Histoclear (Histo-Clear) Hydrazoic acid Hydrogen gyanide Hydrogen sylfide Hydrogen methacrylate iodomethane	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane affluoroethane affluoropthane filuoropropane Dipropylcarbinol HMDS HMDS HMDS Luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid Hydriodic acid	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3 592-41-6 302-01-2 1333-74-0 74-90-8 10034-85-2 7722-84-1 7783-30-4 27813-02-1 923-26-2 7563-50-2 74-88-4	C ₂ H ₁₈ C ₂ H ₁₉ OS ₂ C ₆ H ₁₉ OS ₂ C ₆ H ₁₄ O C ₆ H ₁₄ O C ₆ H ₁₅ O C ₇ H ₁₇ O C ₇ H ₁₇ O C ₇ H ₁₇ O C ₇ H ₁₇ O	1.8 0.33 350 9 0.5 >8 NR NR NR NR 0.21	+ + + + + + + + + + + + + + + + + + + +	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6 NR NR NR 3.3 2.3	++ +++ ++++	0.5 0.25 0.54 0.55 0.3 2.1 NR NR 1.5 1.1 0.26	++ ++ ++ +++	9.61 -8.6 9.64 10.13 9.89 9.44 10.7 15.43 13.6 10.39 10.54 10.45	nn 55 nn 33 nn 000 nn C4.
HCFC-123 see 2.2-Dichloro- HCFC-1418 see 1Dichloro- HCFC-1418 see 1Chloro-1, HCFC-134A see 1.,1,1,2-Tetr HCFC-225 see Dichloropenta- Heptanol, 4- Heptanol, 4- Heptanol, 4- Hexamethyldisliazane, 1,1,1,3,3,3- Hexamethyldislioxane Hexane, n- Hexane, 1- HEX-7100 see Methyl nonafi- Histoclear (Histo-Clear) Hydrazoic acid Hydrogen cyanide Hydrogen cyanide Hydrogen peroxide Hydrogen peroxide Hydrogen peroxide Hydroxypropyl methacrylate locine * lodomethane Soamyl acetate	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane rafluoroethane rafluoropthane filuoropthane filuoropthane Dipropylcarbinol HMDS HMDSX Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid Hydriodic acid Methyl iodide Isopentyl acetate	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3 502-41-6 302-01-2 302-01-2 74-90-8 10034-85-2 7722-84-1 7783-06-4 27813-02-1 923-26-2 74-88-4 123-92-2	CyHise CyHisO CyHisO CyHisO CyHisO CyHisO CyHisO MNW ~138 HJNL HCN HH H2O CyHisO CyHisO CyHisO CyHisO CyHisO CyHisO	1.8 0.33 350 9 0.5 >8 NR NR NR NR	+ + + + + + + + +	1.3 0.27 4.3 2.5 0.8 0.4 2.6 NR NR -0.6 NR 3.3 2.3	++ +++ ++ ++	0.5 0.25 0.54 0.55 0.3 21 NR NR 1.5 1.1	*+ **	9.61 -8.6 9.64 10.13 8.89 9.44 8.1 10.7 15.43 13.6 10.39 10.54 10.45	n n 5 n 3 3 n 0 0 0 n C4.
IGFC-123 see 2.2-Dichloro- IGFC-1418 see 1Dichloro- IGFC-1418 see 1Chloro-1, IGFC-134A see 1I,1,2-Tetr IGFC-25 see Dichloropenta- Ieptanol, 4- Ieptanol, 4- Ieptanol, 4- Iexamethyldisilazane, 1,1,3,3,3- Iexamethyldisilazane Iexane, n- Ie	methane 1, 1, 1-trifluoroethane 1, 1, 1-trifluoroethane 1-difluoroethane 1-difluoroethane affluoroethane affluoropropane Dipropylcarbinol HMDS HMDSx Hexyl alcohol uorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid Hydriodic acid Methyl iodide Isopentyl acetate 2-Methylpropane	589-55-9 969-97-3 107-48-0 110-54-3 111-27-3 592-41-6 302-01-2 1333-74-0 74-90-8 10034-85-2 7722-84-1 7783-08-4 27813-02-1 923-26-2 74-88-4 1923-25-2 74-88-4 1923-25-2 74-88-4 1923-25-2 75-58-5	CyH ₁₈ CyH ₁₈ OS ₂ CyH ₁₈ OS ₂ CyH ₁₈ OS ₂ CyH ₁₈ OS ₂ CyH ₁₈ O ₂ CyH ₁₈ O ₃	1.8 0.33 350 9 0.5 >8 NR NR NR 0.21 10.1	+ + + + + + + + + +	1.3 0.2 0.27 4.3 2.5 0.8 0.4 2.6 NR NR -0.6* NR 3.3 2.3	++ +++ ++ +++ ++	0.5 0.2 0.54 0.55 0.3 2.1 NR NR 1.5 1.1	++++++++++	9.61 -8.6 9.64 10.13 9.89 9.44 8.1 10.7 15.43 13.6 10.39 10.54 10.45	n n n n n n n n n n n n n n n n n n n
HGFC-123 see 2.2-Dichloro- HGFC-141B see 1Chloro-1, HGFC-134A see 1.,1,1,2-Tetr HGFC-225 see Dichloropenta Heptane, n- Heptanel, 4- Hexamethyldisliazane, 1,1,1,3,3,3-* Hexamethyldislioxane Hexane, n- Hexane, 1- Hexene, 1- Hexene, 1- Hexene, 1- Hexene, 1- Histoclear (Histo-Clear)	methane 1,1,1-trifluoroethane 1-tifluoroethane 1-tifluoroethane 1-tifluoroethane rafluoroethane rafluoropthane filuoropthane filuoropthane Dipropylcarbinol HMDS HMDSX Hexyl alcohol luorobutyl ether Limonene/com oil reagent Hydrogen azide Synthesis gas Hydrocyanic acid Hydriodic acid Methyl iodide Isopentyl acetate	589-55-9 999-97-3 107-48-0 110-54-3 111-27-3 502-41-6 302-01-2 302-01-2 74-90-8 10034-85-2 7722-84-1 7783-06-4 27813-02-1 923-26-2 74-88-4 123-92-2	CyHise CyHisO CyHisO CyHisO CyHisO CyHisO CyHisO MNW ~138 HJNL HCN HH H2O CyHisO CyHisO CyHisO CyHisO CyHisO CyHisO	1.8 0.33 350 9 0.5 >8 NR NR NR NR 0.21	+ + + + + + + + +	1.3 0.27 4.3 2.5 0.8 0.4 2.6 NR NR -0.6 NR 3.3 2.3	++ +++ ++ ++	0.5 0.25 0.54 0.55 0.3 21 NR NR 1.5 1.1	*+ **	9.61 -8.6 9.64 10.13 8.89 9.44 8.1 10.7 15.43 13.6 10.39 10.54 10.45	n n n n n n n n n n n n n n n n n n n

RAE Systems Inc. 3775 N. First St., San Jose, CA 95134-1708 US. Phone: +1.868.723.823 Email: recales@raesystems.com Web Ster waw raesystems.com

TABLE 1. (cont) Correction Factors and Ionization Energies

SOP: 2139 PAGE: 16 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

									175	evised 12	ALUUN .
Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	E (eV)	TWA
sobutyl acrylate	Isobutyl 2-propenoate	106-63-8	C ₇ H ₁₂ O ₂			1.5	+	0.60	+		Ne
Isoflurane	1-Chloro-2,2,2-trifluoroethyl difluoromethyl ether, forane	26675-46-7	C₃H₂CIF₅O	NR	+	NR	+	48	+	~11.7	Ne
spoctane	2,2,4-Trimethylpentane	540-84-1	C8H18			12				9.86	ne
sopar E Solvent	Isoparaffinic hydrocarbons	64741-66-8	m.w. 121	1.7	+	0.8	+			0.00	Ne
sopar G Solvent	Photocopier diluent	64742-48-9	m.w. 148			0.8	+				Ne
sopar K Solvent	Isoparaffinic hydrocarbons	64742-48-9	m.w. 158	0.9	+	0.5	+	0.27	+		Ne
sopar L Solvent	Isoparaffinic hydrocarbons	64742-48-9	m.w. 163	0.9	+	0.5	+	0.28	+		Ne
sopar M Solvent	Isoparaffinic hydrocarbons	64742-47-8	m.w. 191			0.7	+	0.4	+		N
sopentane	2-Methylbutane	78-78-4	C ₅ H ₁₂			8.2					Ne
sophorone		78-59-1	C ₀ H ₁₄ O					3		9.07	C
soprene	2-Methyl-1,3-butadiene	78-79-5	C ₅ H ₆	0.69	+	0.63	+	0,60	+	8.85	Ne
sopropanol	Isopropyl alcohol, 2-propanol, IPA	67-63-0	C ₂ H ₈ O	500	+		+	2.7		10.12	200
sopropyl acetate		108-21-4	C5H10O2			2,6				9.99	100
sopropyl ether	Diisopropyl ether	108-20-3	CeH14O			0.8		2.1		9.20	250
Jet fuel JP-4	Jet B, Turbo B, F-40 Wide cut type aviation fuel	8008-20-6 + 64741-42-0	m.w. 115			1.0	+	0.4	+		Ne
Jet fuel JP-5	Jet 5, F-44, Kerosene type aviation fuel	8008-20-6 + 64747-77-1	m.w. 167			1000			+		25
Jet fuel JP-8	Jet A-1, F-34, Kerosene type aviation fuel	8008-20-6 + 64741-77-1	m.w. 165			0.6	+	0.3	+		30
Jet fuel A-1 (JP-8)	F-34, Kerosene type aviation fuel	8008-20-6 + 64741-77-1	m.w. 145			0.67					3
let Fuel TS	Thermally Stable Jet Fuel, Hydrotreated kerosene fuel	8008-20-6 + 64742-47-8	m.w. 165	0.9	+	0.6	+	0.3	+		3
imonene, D-	(R)-(+)-Limonene	5989-27-5	CtaHte			0.33	+			~8.2	N
Kerosene C10-C16 petro.dis		8008-20-6									
MDI - see 4,4'-Methylenebis											
Maleic anhydride	2,5-Furandione	108-31-6	C4H2O3							~10.8	0.
Mesitylene	1,3,5-Trimethylbenzene	108-67-8	C ₆ H ₁₂	0.36	+	0.35	+	0.3	+	8.41	2
Methallyl chloride - see 3-C		74 00 0		***							
Wethane	Natural gas	74-82-8	CH ₄	NR	+	NR	+	NR	+	12.61	N
Methanol	Methyl alcohol, carbinol	67-56-1	CH4O	NR	+	NR	+	2.5	+	10.85	20
Methoxyethanol, 2-	Methyl cellosolve, Ethylene glycol monomethyl ether	109-86-4	C₃H ₆ O₂	4.8	+	2.4	+	1.4	+	10.1	
Methoxyethoxyethanol, 2-	2-(2-Methoxyethoxy)ethanol Diethylene glycol monomethyl ether	111-77-3	C ₇ H ₁₈ O	2.3	+	1.2	+	0.9	+	<10	N
Methoxyethyl ether, 2-	bis(2-Methoxyethyl) ether, Diethylene glycol dimethyl ether, Diglyme	111-96-6	CeH14O3	0.64	+	0.54	+	0.44	+	<9.8	N
Methyl acetate	Digitie	79-20-9	C ₁ H ₀ O ₂	NR		6.6	+	1.4	+	10.27	20
Methyl acrylate	Methyl 2-propenoate, Acrylic acid methyl ester	96-33-3	C ₄ H ₉ O ₂			3.7	+	1.2	+	(9.9)	
Methylamine	Aminomethane	74-89-5	CH ₄ N			12				8.97	- 1
Methyl amyl ketone	MAK, 2-Heptanone, Methyl pentyl ketone	110-43-0	C,H140	0.9	+	0.85	+	0.5	+	9.30	5
Methyl bromide	Bromomethane	74-83-9	CH ₈ Br	110	+	1.7	+	1.3	+	10.54	1
Methyl t-butyl ether	MTBE, tert-Butyl methyl ether	1634-04-4	C ₅ H ₁₂ O	,,,,		0.9	+	1.0		9.24	4
Methyl cellosolve Methyl chloride	see 2-Methoxyethanol Chloromethane	74-87-3	CH ₄ CI	NR	+	NR	+	0.74	+	11.22	5
Methylcyclohexane		107-87-2	C ₇ H ₁₄	1.6	+	0.97	+	0.53	+	9.64	40
Methylene bis(phenyl- isocyanate), 4,4'- "	MDI, Mondur M	and the last	CisHieNbOz		s y 5		E) IE	wel res	Sec.		
Methylene chloride	Dichloromethane	75-09-2	CH ₂ Cl ₂	NR	+	NR	+	0.89	+	11.32	2
Methyl ether	Dimethyl ether	115-10-6	C2H4O	4.8	+		+	2.5	+	10.03	N
Methyl ethyl ketone	MEK, 2-Butanone	78-93-3	C ₄ H ₈ O	0.86	+	0.9	+	1.1	+	9.51	20
		60-34-4	C ₂ H _e N ₂	1.4	+	1.2	+	1.3	+	7.7	0.0
Methylhydrazine	Monomethylhydrazine, Hydrazomethane	00-34-4	C2LIBL45	1.4	7	12	- 7	1.0	*	1:1	0.0

TABLE

RAE Systems Inc. 3775 N. First St., San Jose, CA 95134-1708 USA Phone: +1.888,723,5823 Email: raesie@graesystems.com Web Site: www.raesystems.com

1. (cont)

Correction Factors and Ionization Energies

SOP: 2139 PAGE: 17 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

				Tech	ni	cal	N	ote		V-1(
Methyl isobutyl ketone	MIBK, 4-Methyl-2-pentanone	108-10-1	CeH ₁₂ O	0.9	+	0.8	+	0.6	+	9.30	50
Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	106	C	117	CI	E (eV)	TWA
Methyl isocyanate	CH3NCO	624-83-9	C-H-NO	NR	+	4.6	+	1.5	200	10.67	0.02
Methyl isothiocyanate	CH3NCS	551-61-6	C ₂ H ₃ NS	0.5	+	0.45	+	0.4	+	9.25	ne
Methyl mercaptan	Methanethiol	74-93-1	CH ₄ S	0.65	1	0.54	. *	0.66	3	9.44	0.5
Methyl methacrylate	Wedianeurio	80-62-6	C ₅ H ₈ O ₂	2.7	4	1.5	+	1.2	+	9.7	100
Methyl nonafluorobutyl ether	HFE-7100DL	163702-08-7, 163702-07-6		2.1		NR	+	~35	+	0.1	ne
Methyl-1,5-pentanediamine, 2 (coats lamp) *	- Dytek-A amine, 2-Methyl pentamethylenediamine	15520-10-2	06H16N2			-0.6	+			<9.0	ne
Methyl propyl ketone	MPK, 2-Pentanone	107-87-9	C ₄ H ₁₉ O			0.93	+	0.79	+	9.38	200
Methyl-2-pyrrolidinone, N-	NMP, N-Methylpyrrolidone, 1-Methyl-2-pyrrolidinone, 1-Methyl-2-pyrrolidone	872-50-4	C ₂ H ₆ NO	1.0	+	0.8	+	0.9	+	9.17	ne
Methyl salicylate	Methyl 2-hydroxybenzoate	119-36-8	CvHvO3	1.3	+	0.0	+	0.0	+	~0	FRE
Methylstyrene, a-	2-Propenylbenzene	98-83-9	CeHen	1.00	-	0.5	12	200		8.18	50
Methyl sulfide	DMS, Dimethyl sulfide	75-18-3	C-H-S	0.49	+	0.44	+	0.46	+	8.69	ne
Mineral spirits	Stoddard Solvent, Varsol 1, White Spirits	8020-83-5 8052-41-3	m.w. 144	1.0	P	0.69	+	0.38	+	0.00	100
	Calibration Fluid, b.p. 156-207°C	68551-17-7 8052-41-3	m.w. 142	1.0	+	0.7	+	0.3	+		100
Monoethanolamine - see Etha		FOR OR B	0.11.01.0								n none
Mustard *	HD, Bis(2-chloroethyl) sulfide	505-80-2 39472-40-7 88157-82-0	C ₄ H ₆ Cl ₂ S			0.6					0.000
Naphtha - see VM & P Naptha			2744	57.1		3.5		4.45		34.0	
Naphthalene	Mothballs	91-20-3	C ₁₀ H ₈	0.45	+	0.42	+	0.40	+	8.13	10
Nickel carbonyl (in CO)	Nickel tetracarbonyl	13463-39-3	C ₄ NiO ₄			0.18				<8.8	0.001
Nicotine		54-11-5	CtuHtaNa			2.0				S10.6	
Nitric oxide		10102-43-9	NO	~6		5.2	+	2.8	+	9.26	25
Nitroberizene		98-95-3	CeHeNO2	2.6	+	1.9	+	1.6	+	9.81	
Nitroethane		79-24-3	C ₂ H ₉ NO ₂					3		10.88	100
Nitrogen dioxide		10102-44-0	NO ₂	23	+	16	+	8	+	9.75	3
Nitrogen trifluoride		7783-54-2	NF ₃	NR		NR.		NR		13.0	10
Nitromethane		75-52-5	CH ₃ NO ₂					4		11.02	20
Nitropropane, 2-		79-46-9	C ₃ H ₇ NO ₂					2.6		10.71	10
Nonane		111-84-2	C ₂ H ₂₀			1.4				9.72	200
Norpar 12	n-Paraffins, mostly C ₁₀ -C ₁₃	84771-72-8	m.w. 161	3.2	+	1.1	+	0.28	+		ne
Norpar 13	n-Paraffins, mostly C ₁₃ -C ₁₄	84771-72-8	m.w. 189	2.7	+	1.0	+	0.3	+		ne
Octamethylcyclotetrasiloxane		556-67-2	CeH24O4Si		+	0.17	+	0.14	+		ne
Octamethyltrisiloxane		107-51-7	CeH24O2Si		+	0.18	+	0.17	+	<10.0	ne
Octane, n-		111-65-9	CeH ₁₈	13	+	1.8	+	1000		9.82	300
Octene, 1-		111-66-0	C ₈ H ₁₈	0.9	+	0.75	+	0.4	+	9.43	75
Pentane	distance mean scholars of	109-66-0	C5H12	80	+	8.4	+	0.7	+	10.35	600
Peracetic acid *	Peroxyacetic acid, Azetyl hydroperoxide	79-21-0	C ₂ H ₄ O ₃	NR	+	NR	*	2.3	+		ne
Peracetic/Acetic acid mix * Perchloroethene	Peroxyacetic acid, Acetyl hydroperoxide	79-21-0 127-18-4	C ₀ H ₄ O ₃	0.69	+	0.57	+	2.5	*	9.32	25
PGME	PCE, Perchloroethylene, Tetrachloroethylene Propylene glycol methyl ether, 1-	P-0-20-2-20-2	C ₂ Cl ₄ C ₄ H ₁₂ O ₁	2.4	1	1.5	+	1.1	+	8.32	100
	Methoxy-2-propanol		Ogr 1(2O)	2.4		1.0	•	7	•		icit
PGMEA	Propylene glycol methyl ether acetate, 1-Methoxy-2- acetoxypropane, 1-Methoxy-2- propanol acetate	108-65-6	C ₆ H ₁₂ O ₅	1.65	+	1.0	+	0.8	+		ne
Phenol	Hydroxybenzene	108-95-2	CeHeO	1.0	+	1.0	+	0.9	+	8.51	
Phosgene	Dichlorocarbonyl	75-44-5	CCI ₂ O	NR	+	NR	+	8.5	+	11.2	0.1
Phosgene in Nitrogen	Dichlorocarbonyl	75-44-5	CCI ₂ O	NR	+	NR	+	6.8	+	11.2	0.1
		7803-51-2	PH ₂	28		3.9	+	1.1		9.87	0.3

RAE Systems Inc. 3775 N. First St., San Jose, CA 95134-1708 US/ Phone: +1.868,723.8823 Email: raesales@raesystems.com

TABLE 1. (cont) Correction Factors and Ionization Energies

SOP: 2139 PAGE: 18 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	c	IE (eV)	TWA
Photocopier Toner	Isoparaffin mix	Custosia (2000			0.5	+	0.3	+	200	ne
Picoline, 3-	3-Methylpyridine	108-99-6	CeH ₂ N			0.9				9.04	ne
Pinene, a-		2437-95-8	CtaHte			0.31	+	0.47		8.07	ne
Pinene, β-	22200000	18172-67-3	CtoHia	0.38	+	0.37	+	0.37	+	-8	10
Piperylene, isomer mix	1,3-Pentadiene	504-60-9	C ₅ H ₈	0.76	+	0.69	+	0.64	+	8.6	10
Propane		74-98-6	C ₂ H ₈			NR	+	1.8	+	10.95	
Propanol, n- Propene	Propyl alcohol	71-23-8 115-07-1	C ₂ H ₈ O C ₄ H ₈	1.5		1.4	+	1.7	+	10.22	20
Propionaldehyde	Propylene Propanal	123-38-6	C ₂ H ₆ O	1.0	*	1.9	*	1.0	*	9.95	n
Propyl acetate, n-	r ropana.	109-60-4	C ₅ H ₁₀ O ₂			3.5		2.3		10.04	20
Propylamine, n-	1-Propylamine,	107-10-8	C ₂ H ₀ N	1.1	+	1.1	+	0.9	+	8.78	n
ropylanimie, ir	1-Aminopropane	101-10-0	OSHIPA	4.5	*	10.5	-	0.0	*	0.10	
Propylene carbonale *	· · · · · · · · · · · · · · · · · · ·	109-32-7	C4H4O4			62	+	1	4	10.5	TR
Propylene glycol	1,2-Propanediol	57-55-6	C ₅ H ₆ O ₂	18		5.5	+	1.6	+	<10.2	n
Propylene glycol propyl ether	1-Propoxy-2-propanol	1569-01-3	CeH34O2	1.3	+	1.0	+	1.6	+	-	ne
Propylene oxide	Methyloxirane	75-56-9	C ₃ H ₆ O	~240		6.6	+	2.9	+	10.22	21
	C W. 174	16088-62-3									
		15448-47-2									
Propyleneimine	2-Methylaziridine	75-55-8	C ₅ H ₇ N	1.5	+	1.3	+	1.0	+	9.0	- 2
Propyl mercaptan, 2-	2-Propanethiol, Isopropyl	75-33-2	C ₅ H ₆ S	0.64	+	0.66	+			9.15	ne
	mercaptan	110 00 1	CHM	0.70		0.7		0.7		0.05	
Pyridine	Name and Advanced	110-86-1	C ₆ H ₆ N	2.1	+	0.7	+		+	9.25	
Pyrrolidine (coats lamp)	Azacyclohexane	123-75-1	C ₄ H ₉ N	2.1	+	1.3	+	1.6	+	~8.0	n
RR7300 (PGME/PGMEA)	70:30 PGME:PGMEA (1-	107-98-2	C4H10O2 /			1.4	+	1.0	+		n
	Methoxy-2-propanol:1-Methoxy-		C ₈ H ₁₂ O ₉								
	2-acetoxypropane)	107-44-8	C.I. CO.D.								
Sarin	GB, Isopropyl	50642-23-4	C ₄ H ₁₀ FO ₂ P			~3					
Staddard Salvant ran Minara	methylphosphonofluoridate	8020-83-5									
Stoddard Solvent - see Mineral Stvrene	opins	100-42-5	CeHa	0.45	+	0.40	+	0.4	+	8.43	2
Sulfur diaxide		7446-09-5	SO ₂	NR	-	NR	+	NR	+	12.32	-
Sulfur hexafluoride		2551-62-4	SF ₆	NR		NR	1	NR		15.3	100
Sulfuryl fluoride	Vikane	2699-79-8	SO ₂ F ₃	NR		NR		NR		13.0	100
Tabun *	Ethyl N. N-	77-81-8	C ₅ H ₁₁ N ₂ O ₃ P	0.00		O.B				10.0	15pp
	dimethylphosphoramidocyanidate	100				3100					17mg
Tetrachloroethane, 1,1,1,2-	7	630-20-6	C ₂ H ₂ Cl ₄					1.3		~11.1	ne
Tetrachloroethane, 1,1,2,2-		79-34-5	C2H2Cl4	NR	+	NR	+	0.60	+	~11.1	1,43
Tetrachlorosilane		10023-04-7	SiCL	NR		NR		15	+	11.79	ne
Tetraethyl lead	TEL	78-00-2	C ₈ H ₂₀ Pb	0.4		0.3		0.2		~11.1	0.00
Tetraethyl orthosilicate	Ethyl silicate, TEOS	78-10-4	CeH20O ₄ Si			0.7	+	0.2	+	~9.8	11
Tetrafluoroethane, 1,1,1,2-	HFC-134A	811-97-2	C ₂ H ₂ F ₄			NR		NR.			ne
Tetrafluoroethene	TFE, Tetrafluoroethylene,	116-14-3	C ₂ F ₄			~15				10.12	n
200 2000 1000	Perfluoroethylene	SUSSIL				Establish .		250		125.60	
Tetrafluoromethane	CFC-14, Carbon tetrafluoride	75-73-0	CF ₄			NR	+	NR	+	>15.3	n
Tetrahydrofuran	THE	109-99-9	C ₄ H ₆ O	1.9	+	1.7	+	1.0	+	9.41	20
Tetramethyl orthosilicate	Methyl silicate, TMOS	681-84-5	C ₄ H ₁₂ O ₄ Si	10	+	1.9	+	-	54	~10	
Therminol® D-12 *	Hydrotreated heavy naphtna	84742-48-9	m.w. 160	0.8	+	-	+	0.33	+		TH
Therminol® VP-1 *	Dowtherm A, 3.1 Diphenyl oxide:		C ₁₂ H ₁₆ O			0.4	+				73
	Biphenyl	92-52-4	C ₁₂ H ₁₆								
Toluene	Methylbenzene	108-88-3	C ₇ H ₈	0.54	+	0.50	+	0.51	+	8.82	5
Tolylene-2,4-diisocyanate	TDI, 4-Methyl-1,3-phenylene-2,4-	584-84-9	C ₀ H ₆ N ₂ O ₂	1.4	+	1.4	+	2.0	+		0.003
	diisocyanate	400.05.4	CIT C							0.00	0
Trichlorobenzene, 1,2,4-	1,2,4-TCB	120-82-1	C ₆ H ₉ Cl ₃	0.7	+	0.46	+			9.04	C
Trichloroethane, 1,1,1-	1,1,1-TCA, Methyl chloroform	71-55-6	C2H3Cl3	Ne	6	NR	+	1	+	11	35
Trichloroethane, 1,1,2-	1,1,2-TCA	79-00-5	C ₂ H ₃ Cl ₃	NR 0.62	+	NR 0.54	+	0.9	+	11.0 9.47	5
Trichloroethene	TCE, Trichoroethylene	79-01-6	C2HCl3	NR.	+	NR	+	1.8	+	11.36	n
Trichloromethylsilane Trichlorotrifluoroethane, 1,1,2-	Methyltrichlorosilane	75-79-6 76-13-1	CH ₃ Cl ₃ Si C ₂ Cl ₃ F ₃	Lane.		NR		NR	+	11.99	100
Triethylamine	TFA	121-44-8	C ₆ H ₁₅ N	0.95	+	0.9	+	0.65	+	7.3	100
Triethyl borate	TEB; Boric acid triethyl ester	150-46-9	CeH ₁₅ O ₅ B	2.00	-	2.2	Ţ	1.1	-	~10	n
many boate	LLD, DONG GOOD DIEBLY! ESTER	100-10-0	CEI HECTO					Page .	*	-10	

TABLE 1. (cont) Correction Factors and Ionization Energies

SOP: 2139 PAGE: 19 of 19 REV: 0.0 DATE: 11/22/05

MULTI GAS MONITOR PGM-50/PHOTOIONIZATION DETECTOR (PID) MULTIRAE PLUS

				Tech	nı	cai	IN	ote		N- I V evised 12	
Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	CI	E (eV)	TWA
Triethyl phosphate Trifluoroethane, 1,1,2- Trimethylamine	Ethyl phosphate	78-40-0 430-66-0 75-50-3	C ₆ H ₁₅ O ₄ P C ₂ H ₃ F ₅ C ₄ H ₆ N	~50	+	3.1	+	0.60 34	+	9.79 12.9 7.82	ne ne 5
Trimethylbenzene, 1,3,5	see Mesitylene	108-67-8				-					25
Trimethyl borate	TMB; Boric acid trimethyl ester, Boron methoxide	121-43-7	C ₅ H ₀ O ₅ B			5.1	+	12	2+	10.1	ne
Trimethyl phosphate	Methyl phosphate	512-56-1	C ₂ H ₆ O ₄ P			8.0	+	1.3	3 +	9.99	ne
Trimethyl phosphite	Methyl phosphite	121-45-9	C.H.O.P			1.1	+		+	8.5	2
Turpentine	Pinenes (85%) + other disoprenes	8006-64-2	CtoHie	0.37	+	0.30	+	0.29	+	~8	20
Undecane		1120-21-4	C11H24			2				9.56	ne
Varsol - see Mineral Spirits		COLUMN TWO	3-111-24			2					40-
Vinyl actetate		108-05-4	C ₄ H ₈ O ₂	1.5	+	1.2	+	1.0	+	9.19	10
Vinyl bromide	Bromoethylene	593-60-2	C ₂ H ₃ Br			0.4				9.80	5
Vinyl chloride	Chloroethylene, VCM	75-01-4	C2H3CI			20	+	0.6	+	9.99	5
Vinyl-1-cyclohexene, 4-	Butadiene dimer,	100-40-3	C ₅ H ₁₂	0.6	+	0.56	+			9.83	0.1
	4-Ethenylcyclohexene										
Vinylidene chloride - see 1,	1-Dichloroethene										
Vinyl-2-pyrrolidinone, 1-	NVP, N-vinylpyrrolidone, 1- ethenyl-2-pyrrolidinone	88-12-0	C _e H _e NO	1.0	+	0.8	+	0.9	+		ne
Viscor 120B - see Mineral S	Spirits - Viscor 120B Calibration Fluid	Marie Control									
V. M. & P. Naphtha	Ligroin; Solvent naphtha; Varnis maker's & painter's naptha	h 64742-89-8	m.w. 111 (Cs-Co)	1.7	+	0.97	+				300
Xylene, m-	1.3-Dimethylbenzene	108-38-3	CeHin	0.50	+	0.44	+	0.40	+	8.58	100
Xylene, o-	1,2-Dimethylbenzene	95-47-6	CeH ₁₀	0.56	+	0.46	+	0.43		8.56	100
Xylene, p-	1,4-Dimethylbenzene	108-42-3	C _e H ₁₀	0.48	+	0.39	+	0.38	+	8.44	100
None			718-15	1		1		1			
Undetectable				1E+6	3	1E+6		1E+6			

^{*} Compounds indicated in green can be detected using a MiniRAE 2000 or ppbRAE/+ with slow response, but may be lost by adsorption on a MultiRAE or EntryRAE. Response on multi-gas meters can give an indication of relative concentrations, but may not be quantitative and for some chemicals no response is observed.

Therminol® is a registered Trademark of Solutia, Inc.

Example of Automatic Calculation of Correction Factors, TLVs and Alarm Limits for Mixtures (Calculations performed using Excel version of this database, available on request)

(saisting periodice asing executers	CF	CF	CF	Mol.	Conc	TLV	STEL
Compound	9.8 eV	10.6 eV	11.7eV	Frac	ppm	ppm	Ppm
Benzene	D.55	0.53	0.6	0.01	1	0.5	2.5
Toluene	0.54	0.5	0.51	0.06	10	50	150
Hexane, n-	300	4.3	0.54	0.06	10	50	150
Heptane, n-	45	2.8	0.6	0.28	50	400	500
Styrene	0.45	0.4	0.42	0.06	10	20	40
Acetone	1.2	1.1	1.4	0.28	50	750	1000
Isopropanol	500	6	2.7	0.28	50	400	500
None	1	1	1	0.00	0	1.	
Mixture Value:	2.1	1.5	0.89	1.00	181	58	172
TLV Alarm Setpoint when					ppm	ppm	ppm
Calibrated to Isobutylene:	26	37	62				
STEL Alarm Setpoint, same Calibration	ppm 86	ppm 115	ppm 193				
	ppm	ppm	ppm				

FIELD PROCEDURES - CHAIN-OF-CUSTODY	Page 1 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11
Technical Approval:	Date: 3/1///
QA Management Approval:	Date: 3]1/1]
- ON - OUR - I - OUR MINISTER	

SOP Description

This Standard Operating Procedure (SOP) describes the steps that are to be taken to ensure a correct Chain-Of-Custody (COC) program is followed for every TechLaw project involving sampling activities. The program allows for the tracking of possession and handling of individual samples, from the time of field collection through laboratory analysis. Because samples collected during an investigation could be used as evidence in litigation, possession of the samples must be traceable from the time each sample is collected until analytical results are introduced as evidence in legal proceedings.

This SOP must be used in conjunction with the procedures for packaging and shipping samples as discussed in SOP No. 04-02-XX, Environmental Samples, and SOP No. 04-03-XX, *Hazardous Materials/Dangerous Goods*.

General Procedures

Related SOPs

This SOP is to be used in conjunction with the other relevant or applicable SOPs found in the following SOP categories:

Category No.	Category Title
02	Field Procedures
03	Field Documentation Procedures
04	Packaging and Shipping Procedures
05	Field Equipment Operation and Maintenance Procedures
06	Groundwater Sampling/Monitoring and Analysis Procedures
07	Soil/Sediment Sampling and Analysis Procedures
08	Surface Water Sampling and Analysis Procedures
09	Health and Safety Procedures
10	Regulatory Compliance Procedures
11	Quality Assurance Procedures
12	Incineration/BIF Sampling and Analysis Procedures

FIELD PROCEDURES -CHAIN-OF-CUSTODY

Page 2 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11

13	Waste Sampling and Analysis Procedures
14	Asbestos Handling
15	Region 5 ESAT-Specific SOPs
16	Region 8 ESAT-Specific SOPs

Equipment and Apparatus

- Sample identification labels
- Sample tags (with strings attached)
- Custody seals
- Chain-Of-Custody Records
- Receipt For Samples forms
- Ice chests and ice for sample shipment
- Nylon-reinforced strapping tape
- Clear (packing/strapping) tape
- Plastic zip-lock storage bags
- Pens with permanent water-proof ink
- Large trash bags to line the ice chest (cooler)
- Packaging materials (e.g., vermiculite, bubble wrap, saw dust, etc.)

Additional equipment and apparatus when using FORMS II Lite

- Computer, preferably with internet access
- Three-in-one portable printer
- Sticker labels for printing (such as Avery labels for printing)

Page 3 of 10 SOP Number: 02-05-03

Effective Date: 03/01/11

Definitions

Sample under Custody

A sample is considered to be "under custody" if one or more of the following criteria are met:

- The sample is in the sampler's or the transferee's actual possession,
- The sample is in the sampler's or transferee's view after being in his/her possession,
- The sample was in the sampler's or transferee's possession and then was locked up in a secure place to prevent tampering, and
- The sample is placed in a designated secure area.

Sampler

The sampler is defined as the person responsible for the collection of the samples. Any person on the sampling team may serve as the sampler.

Transferee

The transferee is the person designated to receive and maintain custody of the samples and coordinate shipment of the samples from the site of collection to the analytical laboratory. Any person on the sampling team may serve as the transferee. In addition, the role of the transferee may be filled by several different people throughout the course of the sampling activities. The basic function of the transferee is to assume the responsibility of custody of the samples from the time the samples are collected until they are relinquished to the shipping company or the analytical laboratory.

Description of Chain-Of-Custody Forms

The COC process requires that specific COC forms and paperwork be prepared to document custody of the samples, from the time they are collected in the field until received by the analytical laboratory. A brief description of each of the forms and/or paperwork follows:

Page 4 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11

■ Sample Identification Label - A sample identification label is affixed to each sample container to prevent misidentification of the samples after collection. The labels are usually self-adhesive and are affixed to the sample containers by placing them directly on the container exterior. Information to be provided on each label includes the site identification¹, date, time, preservative used (if any), type of analysis to be performed, name of sampler, and sample control number. The information should be recorded using permanent water-proof ink. The sample labels can be affixed to the sample containers either immediately before or after the sample collection activities. However, care must be taken to ensure that the containers are not mislabeled if the labels are applied after the samples are collected.

Sample identification labels are usually provided along with the shipment of sample containers, however, they can also be purchased separately. Sample containers and labels may be acquired from either the laboratory contracted to perform the analytical work, or from an independent source. Examples of sample identification labels are provided in Attachment A.

- Sample Tag A sample tag may also be used to identify samples collected in the field.

 Requirements for using sample tags will be discussed in the QAPP or SAP. A sample tag consists of an identification label which is tied to the neck of the sample container.

 Information to be provided on each sample tag includes the project code, sample station number, the date and time of sample collection, type of sample (e.g., grab or composite), sample station location, the samplers' signatures, whether or not a preservative was added, type of analysis to be performed, tag number, and lab sample number. A copy of a sample tag is provided in Attachment B.
- Custody Seal A custody seal is affixed over each sample container and lid to provide evidence that the sample was not tampered with during transport to the analytical laboratory. The custody seals are self-adhesive and should be placed such that they cover the sample containers and lids and sample tag strings, but not the writing on the sample labels. The custody seals may contain the date and signature of the sampler; provide space to include the sample number; the name of the individual who breaks the seal; and, the date that the seal is broken. Care must be taken to ensure that all sample identification characters are transcribed correctly on all related documents. Custody seals are also used to

¹ Under no circumstances is it acceptable to provide the laboratory with the name, location or other identifying information for the site (this <u>includes</u> listing facility information on the chain-of-custody). Facility initials, TechLaw project number or other identifier should be used that will not reveal facility information to the laboratory, but will be evident to TechLaw employees involved with the project.

Page 5 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11

secure the sample shipping containers and lids. Examples of custody seals are provided in Attachment C.

- Chain-Of-Custody Record A COC Record is used to track and document sample possession from the time of collection until receipt at the analytical laboratory. A completed form must be filled out to accompany each shipment of samples to the laboratory. Information to be recorded on the form may include: the project number, project name²; name and address of analytical laboratory; samplers' names and signatures; date and time of sample collection; sample identification numbers; sample description; type of preservative; grab or composite; number of containers included in the shipment; analytical parameters requested; and, sample tag number (if applicable). The bottom portion of the form contains blocks for the signatures of the persons involved in the chain of possession, including dates of possession, and any pertinent remarks. A copy of a COC Record form is provided in Attachment D.
- Receipt For Samples Form RCRA Section 3007 and CERCLA Section 104 require that a "receipt" for all facility samples collected during inspections and investigations be given to the owner/operator of each facility before the field investigator departs the premises. A Receipt For Samples form may be used to satisfy these requirements. In addition, the form may also be used to document that split samples were offered to, and were accepted or rejected by, the owner/operator of the facility, as well as documenting this in the field logbook. A COC Record may also be used to document the collection of split samples and may substitute for the Receipt for Samples form. Information to be entered on the form includes: the project number and name; facility name and location; samplers' signatures; sample station number and description; date and time of sample collection; type of samples collected (e.g., groundwater or soil; grab or composite); sample tag numbers; number of containers; any pertinent remarks; and the signatures of the persons involved in the chain of possession. A copy of a Receipt for Samples form is included as Attachment E.

Chain-Of-Custody Procedures

The field sampling team is responsible for the care and custody of all field samples from the time of collection until shipment to the analytical laboratory. The specific COC procedures to be followed for each sampling event are listed below.

² Under no circumstances is it acceptable to provide the laboratory with the name, location or other identifying information for the site (this includes listing facility information on the chain-of-custody). Facility initials, TechLaw project number or other identifier should be used that will not reveal facility information to the laboratory, but will be evident to TechLaw employees involved with the project.

Page 6 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11

- The sampling team should collect samples in the field such that the most sensitive parameters are addressed before the less sensitive parameters (e.g., volatile organic samples should be collected prior to metals, cyanide, and other parameters). Refer to the SOP "06-," "07-," and "08-," "12-", and "13-" series for specific sampling procedures for groundwater, soil/sediment, surface water, incineration/BIF, and waste, respectively.
- Each sample container should be filled with the sample, and then placed in an ice chest which contains bagged ice. All environmental sample containers must be placed in the ice chest immediately after collection to preserve the integrity of the sample parameters. The ice chest with the samples must remain in view of the samplers in order for the samples to remain in custody.
- After all sample parameters have been collected at a specific sample location, the sampling team travels back to the central staging area, relinquishes control of the samples to the transferee for safekeeping, and prepares for the next sampling location. If only two field samplers are present, samples must be placed on ice and locked in a secure location (e.g., vehicle) before departing for the next sample location.
- The transferee (or other field team members, as appropriate) should inspect the sample containers to ensure they were properly filled and secured. Any problems observed with the sample containers (e.g., broken glass containers, sample bottles not adequately filled, loose lids) should be completely documented in the field logbook.
- If not already affixed, the transferee/field team members should apply sample identification labels and/or sample tags to the sample containers. A layer of clear (packing/strapping) tape may be placed directly over each sample label to prevent the ink from smearing and slippage of the label due to condensation on the outside of the container. After the sample containers have been labeled/tagged, the transferee may secure each sample with custody seals. Samples are then placed into plastic zip-lock type bags. Large sample containers (e.g., one-gallon amber glass jugs) do not need to be placed into plastic bags. The sample containers are then returned to the ice chest.
- After all samples have been collected and the containers appropriately labeled, the transferee then completes the COC Record. If necessary, the transferee and/or sampling team members transfer the sample containers from the sample storage ice chest into the sample shipping container (which may be a different ice chest). The transferee/team

³ Only environmental samples should be preserved with ice; waste samples are never shipped with ice. Refer to SOP No. 04-02-XX for more information regarding the packaging and shipping procedures for environmental samples.

Page 7 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11

members must ensure that the samples are properly packaged within the shipping container. Refer to SOP No. 04-02-XX for sample packaging and shipping procedures.

- The original and at least one copy of the COC Record must be placed inside a plastic zip-lock type storage bag and taped to the underside (interior) of the shipping container lid. One copy of the COC Record must be retained by the transferee for placement into the project files.
- The sample shipping container should then be closed and secured with several layers of strapping tape at each end of the shipping container. At least two custody seals must be placed along the front and back edges of the container, where the container body and lid meet. The custody seals should be affixed such that the shipping container cannot be opened without tearing or disturbing the seals. Secure the seals by covering them with tape. The seals should be secured to prevent their accidental removal during shipment. Only one layer of tape should cover the seals to ensure that they remain visible through the tape.
- The shipping airbill should then be completed and attached to the shipping container. The transferee (or other sample team member as designated by the transferee) must personally deliver and release the shipping container to the shipping company or the analytical laboratory.
- If it is not possible to release the sample shipment to the shipping company, or if the samples must be retained overnight, the transferee or designated custodian must maintain custody of the samples until the shipment can be accomplished. Custody is maintained provided that the samples:
 - · Remain in the transferee's actual possession.
 - Remain in the transferee's view after being in his/her possession.
 - · Are locked up in a secure place to prevent tampering.
 - Are placed in a designated secure area.

If the shipping delay is of a short duration (less than twenty-four hours in most circumstances), the shipping container should remain closed and sealed. The actual release time to the shipping company should then be entered in the field logbook. If the delay time is of a longer duration, or the conditions where the samples are stored are likely to lead to loss of ice (i.e., if the samples are kept in a locked vehicle on a hot day), the shipping container should be re-opened and additional ice added to the container. In addition, the laboratory should be contacted and informed of any pending shipping delays.

FIELD PROCEDURES -CHAIN-OF-CUSTODY

Page 8 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11

- Prepare a Receipt For Samples form or a COC form and present it to the facility representative prior to departing the facility. Document in the field logbook whether split samples were offered to, and were accepted or rejected by, the facility representative. The transferee must keep one copy of the Receipt For Samples form or COC form for inclusion in the project files.
- Document all field sampling and shipping activities, and COC procedures in the field logbook and photographic record. In addition, any COC deviations from the SAP or this SOP must be documented and justified in the field logbook. Field logbook and photographic log documentation procedures can be found in SOP Nos. 03-01-XX and 03-02-XX, respectively.

The above COC procedures are guidelines that should generally be followed by TechLaw field personnel. However, the site-specific SAP and QAPP should identify any specific requirements based on project or contract requirements. For EPA Superfund contracts, it is often necessary to send the samples to a Superfund's Analytical Services Branch (ASB) Contract Laboratory Program (CLP) Routine Analytical Services (RAS). When a CLP lab is the designated recipient of the samples, the Field Operations Records Management System II Lite (FORMS II Lite) should be used to generate labels, COCs and traffic reports (TRs).

FORMS II Lite is a program that helps automate the field sampling documentation process. Computer-based and web-based training is available at the following web page: http://epa.gov/superfund/programs/clp/f2ltrain.htm. All field personnel are encouraged to take this training.

FORMS II Lite proceeds through a series of logical steps to allow the user to input information. It contains seven steps which ultimately lead to the creation of labels and records. The seven steps are listed below.

Step 1: Enter Site Information

Step 2: Select Sampling Team

Step 3: Select Analysis

Step 4: Station/Location

Step 5: Assign Bottles

Step 6: Assign Lab

Page 9 of 10 SOP Number: 02-05-03 Effective Date: 03/01/11

Step 7: Assign Carrier

Initiating a project is done in Steps 1 through 3; sample locations are identified in Step 4; numbering and documenting samples is accomplished in Step 5; and shipping information is generated in Steps 6 and 7.

FORMS II Lite generates a Regional COC, which should be sent to the EPA Region that owns the contract under which the sampling is conducted. Depending on the EPA Regional requirements, the following actions may be required after the samples are shipped in accordance with the above general procedures.

■ Upload the TR/COC to the EPA Sample Management Office (SMO) website (you should have had exported the TR as an .xml file before executing this action). Access to the SMO website will require a User Name and Password and should be obtained from the TechLaw Project Manager or the EPA Project Manager in advance.

The SMO website address is: http://epasmoweb.fedcsc.com/scstr/

Submit the Regional COC/TR to the EPA Region. In some Regions (e.g., Region 3), a scanned (PDF) version of the COC/TR vial email is an acceptable form of submittal. Check with your Region whether email or fax of the COC/TR is acceptable in lieu of shipping the original to the Region.

Health and Safety Section

It is TechLaw's policy to maintain an effective program for control of employee exposure to chemical, radiological, and physical stress which is consistent with OSHA and other applicable and appropriate established standards and requirements.

All field personnel will be provided with appropriate personal protective clothing and safety equipment. At a minimum, this will include a hardhat, hearing protection, full-face respirator, steel-toed safety shoes, and safety glasses. Personnel are required to inspect their PPE prior to entering any job site and replace any damaged items.

A site-specific health and safety plan must be developed by the field team leader or designee and approved by the TechLaw Health and Safety Director prior to implementation in the field. This plan must be reviewed with the field team members prior to beginning work.

FIELD PROCEDURES - CHAIN-OF-CUSTODY

Page 10 of 10

SOP Number: 02-05-03 Effective Date: 03/01/11

Any deviation(s) from an approved site-specific health and safety plan must be documented in the field logbook.

QA/QC Section

None at this time.

Comments/Notes

None at this time.

Attachments

Attachment A - Sample Identification Labels (examples)

Attachment B - Sample Tag (examples)

Attachment C - Custody Seals (examples)

Attachment D - Chain-Of-Custody Record (examples)

Attachment E - Receipt For Samples Form (examples)

References

TechLaw, Corporate Quality Management Plan, most current revision.

TechLaw, Health and Safety Program, most current version.

ATTACHMENT A [Revised 03/01/11] SOP Number: 02-05-03

SAMPLE IDENTIFICATION LABELS

	PICHER		illy Cleaned a Container
36 B. J. TUNNELL B	NTAL SERVICES LVO MWMI, OK 74354 -331-7425	LOT NO.:	
DATE:	TIME	COLLECTED	BY:
SAMPLING SITE:	1		
SAMPLE TYPE:	☐ Composite ☐] Other	
TESTS REQUIRED:			PRESERVATI

ATTACHMENT B [Revised 03/01/11] SOP Number: 02-05-03

SAMPLE TAG

ATTACHMENT C [Revised 03/01/11]

SOP Number: 02-05-03

CUSTODY SEALS

CUSTODY SEAL	-
DATE	CHEM (80) 553 856
SIGNATURE	Specially Carrell Consines

TechLaw			-)	Chain	of C	ust	od	y F	Re	co	rd						Tech	Law I	nc.,	
Project Code Project (site) Name		Samples	Shipped 7	îo .		Sa	mplers	Nam	es			,	1)	(E	inter in Surface	escription column A Water I Water	(Enter in 1, HC1 2, HNOs		n colum	nn B)
City, State, Zip Code		Carrier		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Sa	mplers	Sign	ature	٠.		-		3.	Leachs Rinsate Soil/Se	ite		3. Na H: 4. H ₂ SO 5. Na O	SO H	
Date Shipped		Air Bill	Number											7.	Oil Waste Other	(specify)		6. Other (7. Ice only N. Not pr		
Sample Identification Numbers	A. Maurix enter from Box 1	from	Grah or	Number of Sample Containers	MM/DI Tim samp collec	e de	Angles	2/	1	1	1/	1/	1	1	1/	//	/	Rema Tag Nur		
**************************************															+					
							1				1			1						
						_														
(_					_	
														_						_
ne de la constante de la const					T		+		-	_										
Relinquished By	Time		Received		Time	Date	Rece					Time		1	Receive				Time	Date
Relinquished By	Time	Date	Received	Ву	Time	Date	Rece	ived	Ву			Time	Date		Receive	d By			Time	Date
Remarks											TWO STATES								Ç	开节
Distribution: Original - TechLaw Carbon copies - Labo		ork assig	nment ma	nager, client (as appropr	iate)												Page _	of	

CHAIN-OF-CUSTODY RECORD

ATTACHMENT D [Revised 03/01/11] SOP Number: 02-05-03

ATTACHMENT E [Revised 03/01/11] SOP Number: 02-05-03

RECEIPT FOR SAMPLES FORM

Transferred by: (Signiture) Telephone Received by: (Signiture) Telephone

FIELD DOCUMENTATION PROCEDURES -MAINTAINING A FIELD LOGBOOK

Page 1 of 6 SOP Number: 03-01-04 Effective Date: 03/01/11

Technical Approval:	Date: 3/1/1/
QA Management Approval:	Date: 3/)/1/

SOP Description

This Standard Operating Procedure (SOP) establishes general practices and requirements for the use of field logbooks during environmental field activities, including, but not limited to, soil/sediment sampling, groundwater sampling, well installations, surface water sampling, environmental assessments, and environmental audits. SOPs for the use of field logbooks during RCRA Visual Site Inspections and oversight of RCRA Facility Investigations and Remedial Investigations are provided in SOP Nos. 03-03-XX and 03-04-XX, respectively.

Logbooks are used by personnel to document all activities and information gathered in the field. The field logbook entries must be legible, factual, detailed and objective. Proper field documentation is crucial in the logbook because the logbook ultimately may become part of the public record and may be used in future legal actions. The field logbook must provide sufficient documentation to enable participants to reconstruct events that occurred and to refresh the memory of the field personnel if called upon to give testimony during legal proceedings.

General Procedures

Related SOPs

This SOP is to be used in conjunction with other relevant or applicable SOPs found in the following SOP categories:

Category No.	Category Title
02	Field Procedures
03	Field Documentation Procedures
04	Packaging and Shipping Procedures
05	Field Equipment Operation and Maintenance Procedures
06	Groundwater Sampling/Monitoring and Analysis Procedures
07	Soil/Sediment Sampling and Analysis Procedures
08	Surface Water Sampling and Analysis Procedures

FIELD DOCUMENTATION PROCEDURES -MAINTAINING A FIELD LOGBOOK

Page 2 of 6 SOP Number: 03-01-04 Effective Date: 03/01/11

09	Health and Safety Procedures
10	Regulatory Compliance Procedures
11	Quality Assurance Procedures
12	Incineration/BIF Sampling and Analysis Procedures
13	Waste Sampling and Analysis Procedures
14	Asbestos Handling
15	Region 5 ESAT-Specific SOPs
16	Region 8 ESAT-Specific SOPs

Equipment and Apparatus

- Field logbooks (Minimally one per person.)
- Black or Blue pens with waterproof ink (preferably)
- Compass (preferably)
- Watch

Type of Field Logbook

The field logbook must be bound and preferably waterproof. A standard surveyor's notebook or the "Rite in the Rain"® Weatherproof Transit Book No. 300, J.L. Darling Corporation, Tacoma, Washington, are types of acceptable notebooks that can be used by TechLaw personnel. Other notebooks are acceptable, provided that they are bound prior to use in the field. A supply of field notebooks should be kept in each office location.

Maintenance of Field Logbook

The Field Team Leader is responsible for the field logbooks. Each field team member may be required to maintain a field logbook; in addition, the Field Team Leader may designate a team member as the official record keeper. To ensure consistency in documentation, each logbook is to be maintained by the same person for the duration of the project, if feasible. The Field Team Leader must review the logbooks during the environmental field activities to check that the procedures in this SOP are being followed and that the information is entered correctly. Additionally, it is the responsibility of the Field Team Leader to ensure that RCRA CBI procedures are followed if confidentiality is requested by the facility representative.

FIELD DOCUMENTATION PROCEDURES - MAINTAINING A FIELD LOGBOOK

Page 3 of 6 SOP Number: 03-01-04 Effective Date: 03/01/11

Notations in Field Logbook

- All notations in field logbooks should be made in waterproof ink. A standard ball-point pen is acceptable. No erasures may be attempted. Any corrections or deletions are to be made by drawing a single line through the unwanted notation, so that the notation is still legible. The writer then places his/her initials and the date near the deletion. <u>Under no circumstances are pages to be removed from a field logbook.</u>
- All field logbook notations must be legible.
- A separate field logbook must be used for each project. More than one logbook may be used for a single project if the complexity of the site requires that two separate field teams are active on different parts of the facility simultaneously. If more than one logbook is used, each is to be numbered sequentially (e.g., 1 of 3, 2 of 3, 3 of 3). If two or more separate field teams are maintaining logbooks, each team's logbooks are to be numbered sequentially and clearly identifiable (e.g., Team A Book 1 of 2, Team A Book 2 of 2, Team B Book 2 of 2). Each page of the field logbook must be numbered. Each page also must be dated and signed by the writer. For pages only partially filled with text, a diagonal line must be drawn from the end of the text to the bottom of the page. When field activities last more than one day, the next day's documentation begins on the next page of the field logbook. Relevant site information (e.g., weather, site personnel [personnel could change during the course of the field work], strategies) must be listed at the beginning of each day's activities. Also, more than one team member may maintain a logbook, at the discretion of the team leader. The maintenance of a logbook is discussed in more detail in the appropriate Field Documentation SOP (e.g., RCRA VSI, Field Oversight).
- The individual maintaining the logbook must put his/her name and contact information on the inside cover or the first (title) page of the logbook. The first page must include the title of the project, project number, facility name, facility location, EPA Identification Number (if appropriate), date(s) of activity, names and companies of the team members and any other appropriate identifying information. If more than one field logbook is used at a facility, each must contain the required project information on the inside cover or the first (title) page of the logbook.

FIELD DOCUMENTATION PROCEDURES -MAINTAINING A FIELD LOGBOOK

Page 4 of 6 SOP Number: 03-01-04 Effective Date: 03/01/11

Information is generally listed in chronological order in the field logbook and by the time of day. All times are to be entered in a 24-hour format (e.g., 7:00 p.m. is 1900). All factual information obtained during field activities must be recorded in the logbook. Information that is not in or referred to in the logbook may not be used in deliverables associated with the field work. The field logbook contains only factual information--no conclusions are placed in the logbook. Weather conditions are documented at least twice a day and must be noted immediately with any significant weather change (e.g., thunderstorm).

Often, sketches are preferred to written descriptions (or used in conjunction with), especially where photographs will not be taken. Sketches must include a north arrow, a rough scale and position of buildings, and any other notable features, such as landmarks (trees, streets etc.).

When photographs are taken, the photograph number is entered into the logbook as well as time of day, compass direction, and a description of what was photographed. Relevant features such as cracks and staining should be documented. See SOP No. 03-02-XX, Taking and Documenting Photographs, for further details.

- The field logbook is the property of the client¹. The project manager is the custodian of the field logbook for the duration of the project. It must remain in the custody of the project manager (or a designated person) until the conclusion of the field portion of the project. The field logbook is then turned over to the central files.
- Once a field logbook is filled up, the logbook should be scanned and a copy placed in the central files (electronic or hard copy) as soon as possible. Additionally, it is recommended that copies of previous logbooks, instead of original logbooks, are brought into the field to minimize the risk of losing hard copy logbooks.

Work products such as field logbooks that are generated during the performance of government contracts are considered the property of the government client. See SOP No. 11-06-XX for further details regarding document control requirements.

FIELD DOCUMENTATION PROCEDURES -MAINTAINING A FIELD LOGBOOK

Page 5 of 6 SOP Number: 03-01-04 Effective Date: 03/01/11

Health and Safety

It is TechLaw's policy to maintain an effective program for control of employee exposure to chemical, radiological, and physical stress which is consistent with OSHA and other applicable and appropriate established standards and requirements.

All field personnel will be provided with appropriate protective clothing and safety equipment.

At a minimum, this will include steel-toed shoes, safety glasses, and chemical-resistant gloves.

A site-specific health and safety plan must be developed by the Field Team Leader or designee and approved by the TechLaw Health and Safety Director prior to implementation in the field. This plan must be reviewed prior to beginning work.

Any deviation(s) from an approved site-specific health and safety plan must be documented in the field logbook.

QA/QC

The Field Team Leader or designee is to conduct periodic QC reviews during a site visit to ensure documentation procedures and administrative requirements have been met.

Comments/Notes

None at this time.

Attachments

None at this time.

References

TechLaw, Corporate Quality Management Plan, most current revision.

TechLaw, Health and Safety Program Plan, most current version.

TechLaw, <u>Security Plan for the Control of Confidential Business Information</u>, most current version.

FIELD DOCUMENTATION PROCEDURES -MAINTAINING Á FIELD LOGBOOK

Page 6 of 6 SOP Number: 03-01-04 Effective Date: 03/01/11

U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, <u>A</u>

<u>Compendium of Superfund Field Operations Methods</u>, EPA/540/P-87/001, OSWER Directive 9355.0-14, Washington, D.C., December 1987.

U.S. Environmental Protection Agency, Office of Solid Waste, <u>RCRA Facility Assessment</u> <u>Guidance</u>, October 1986.

SOP Description

This Standard Operating Procedure (SOP) establishes the practice and requirements for documenting and taking photographs during field activities, including: RCRA Visual Site Inspections (VSIs), oversight of RCRA Facility Investigations (RFIs), oversight of Remedial Investigation/Feasibility Studies (RI/FSs), compliance enforcement inspections (CEIs), comprehensive groundwater monitoring evaluations (CMEs), conduct of sampling activities, and property transfers.

The purpose of these activities is to gather sufficient information and documentation to relay observations to the client and to provide the basis for suggestions for further action or recommendations.

Photographs are taken to obtain visual information concerning unit characteristics, waste characteristics, pollutant migration pathways, releases, and exposure potential. Critical documentation is important because these photographs may eventually be used in enforcement/defense cases, legal actions (as evidence of past releases), or as a basis for property transactions. The photographs could be used months or years later, and must be thoroughly documented.

This SOP indicates the type of information that must be recorded in the field logbook in conjunction with the type of items that must be photographed. The photograph log serves as a visual record of what was seen during the field activities.

General Procedures

Related SOPs

This SOP is to be used in conjunction with other relevant or applicable SOPs found in the following SOP categories:

FIELD DOCUMENTATION PROCEDURES - TAKING AND DOCUMENTING PHOTOGRAPHS

Page 2 of 9 SOP Number: 03-02-04 Effective Date: 03/01/11

Category No.	Category Title
01	General Procedures
02	Field Procedures
03	Field Documentation Procedures
04	Packaging and Shipping Procedures
05	Field Equipment Operation and Maintenance Procedures
06	Groundwater Sampling/Monitoring and Analysis Procedures
07	Soil/Sediment Sampling and Analysis Procedures
08	Surface Water Sampling and Analysis Procedures
09	Health and Safety Procedures
10	Regulatory Compliance Procedures
11	Quality Assurance Procedures
12	Incineration/BIF Sampling and Analysis Procedures
13	Waste Sampling and Analysis Procedures
14	Asbestos Handling
15	Region 5 ESAT-Specific SOPs
16	Region 8 ESAT-Specific SOPs

Equipment and Apparatus

- Digital or 35 mm-type camera (If it is a large facility, two cameras may be necessary.)
- Extra batteries
- If 35 mm-type camera is used, 200 ASA speed film, 24 exposures (minimum)
- Compass (preferably)
- Watch
- Ruler/pen/coin (to illustrate scale)

FIELD DOCUMENTATION PROCEDURES - TAKING AND DOCUMENTING PHOTOGRAPHS

Page 3 of 9 SOP Number: 03-02-04 Effective Date: 03/01/11

Permission to Take Photographs

When conducting field activities, obtain permission to take photographs from the facility representative prior to the field activities. If there is an appearance of resistance from the facility representative, inform the client and together develop a course of action/strategy to obtain resolution prior to the field activities. In addition, it is the responsibility of the Field Team Leader to ensure that CBI procedures are followed if confidentiality is requested by the facility representative.

Maintenance of the Camera

The following generic operating and maintenance activities must be performed in accordance with specific directions provided with the camera.

- Routine inspection and cleaning are to be conducted prior to the field activities. If unfamiliar with the type of camera, review the general directions provided by the manufacturer. However, prior to field activities, ensure familiarity with such "how to" procedures as:
 - Insert and check the battery
 - Load and rewind the film, if applicable
 - · Set the film speed, if applicable
 - Clear memory card, if applicable
 - Set the clock
- Routine testing of batteries must be conducted prior to the field activities and at the beginning of each day in the field. Additional spare camera batteries should be on hand.
- Remedial action in the event of failure or malfunction must be in accordance with the camera warranty (if applicable) and directions for troubleshooting. A malfunction can be caused by shock, humidity, salt, etc. If a camera has been used in the presence of chemicals, it is to be wiped clean. Also, film cameras must not be placed near strong magnetic fields.

FIELD DOCUMENTATION PROCEDURES TAKING AND DOCUMENTING PHOTOGRAPHS

Page 4 of 9 SOP Number: 03-02-04 Effective Date: 03/01/11

General Information Regarding Cameras and Film

Camera Types

Each TechLaw field-ready office location should have a digital and/or 35 mm automatic-focusing/automatic-winding camera or access to one. See SOP No. 02-07-XX for details regarding equipment acquisition, inventory and maintenance if more than one camera is needed. These cameras are relatively simple to use since they do not require manual focusing or shutter speed adjusting. This is advantageous since the photographer may also be tasked with recording the photograph description and picture number, as well as asking questions regarding the purpose of the unit being photographed. These cameras should have an internal clock which records the date and/or time the photograph was taken. Setting the clock is important because it provides additional documentation and also helps in organizing the photographs. The date is a priority. If you can include both settings (i.e., date and time), this is preferred.

Types and Quantities of Film Needed

If a 35 mm type camera is used, the recommended film is 200 ASA speed and 24 exposures (minimum). A sufficient number of rolls of film must be taken on field activities. Since the film rolls are small, a good rule of thumb is to take two rolls for every 10 units or SWMUs identified prior to the field activities. Alternatively, take two rolls for every 25 acres of the site. For sampling visits, one roll for every 6 samples may be sufficient. This would allow for 4 pictures per sample location using a 24-exposure roll. Typical photographs would include one overview, one closer view of the sample collection, one of the filled sample containers, and one extra for other documentation needs. Take as many rolls as you think you will need and then add two as a safety margin. The unused film must be returned to the office.

Quantity of Memory Needed

If a digital camera is used, the camera's memory card should allow for a sufficient number of photographs. Before commencing field activities, it should be ensured that the memory will meet the project needs using the guidelines for film cameras in the section above. If camera memory becomes an issue on site, lower resolution settings can be used.

FIELD DOCUMENTATION PROCEDURES -TAKING AND DOCUMENTING PHOTOGRAPHS

Page 5 of 9 SOP Number: 03-02-04 Effective Date: 03/01/11

Treatment and Shipment of Camera and Film

Cameras and film generally are not affected by the X-ray machines at airport security check stations. However, the X-ray machine will have an effect if the film speed is 1000 ASA or if the film is repeatedly exposed to the X-rays (going through the X-ray machine more than four times).

There are no special shipment procedures for the camera or film. The camera and unexposed film can be packed and checked in the suitcase of the field personnel or shipped in an ice chest with other field equipment. In order to prevent loss, it is recommended that the camera's memory card and/or the exposed film rolls be carried onto the plane and kept in one's possession at all times.

Commonly, there will be unexposed photographs on the last roll of film in the camera. Automatic cameras typically do not allow for rewinding the film until all photographs are taken. One option is to open the shutter, place your hand over the lens and shoot the remaining photographs. These will appear as black negatives and usually there is no charge for processing these. Alternatively, photographs of surrounding areas, such as waterways and residences, or overviews of the facility can be taken in order to complete the roll.

Types and Subjects of Photographs

- During field activities, the Field Team Leader selects one team member to take photographs and record the appropriate information in the field logbook. Photographs must be taken of each unit or SWMU identified unless the facility representative denies permission for that particular unit. In these cases, the refusal is to be documented in the field logbook.
- Photographs are taken to document conditions at the facility or sampling activities. The types of pictures taken must include:
 - Representative overall pictures of the facility or site;
 - Posted signs identifying ownership of the facility or site;
 - Evidence of releases (e.g., leachate seeps, pools of liquid, discolored water, and stained soils);
 - Individual units such as lagoons, drums, and landfills;

FIELD DOCUMENTATION PROCEDURES - TAKING AND DOCUMENTING PHOTOGRAPHS

Page 6 of 9 SOP Number: 03-02-04 Effective Date: 03/01/11

- Visual evidence of poor facility maintenance;
- Examples of typical facility operation;
- Adjacent land use;
- · Sample locations/activities; and
- Areas that unauthorized persons can easily access.
- Information that must be recorded in the field logbook in conjunction with each photograph includes:
 - · Photographer's name;
 - · Type of camera (e.g., digital or 35 mm);
 - Type of film (if applicable);
 - · Photograph number;
 - · Date and time;
 - Name and identification number of unit or SWMU;
 - Location of unit or SWMU;
 - · Orientation of photograph (i.e., direction photographer is facing);
 - · Observed evidence of release (e.g., staining, overflow);
 - Notable features of unit or SWMU that may provide evidence of release (e.g., cracking, obvious lack of integrity of unit);
 - · Information to help characterize the unit, or picture; and
 - Other comments (e.g., weather, if a zoom lens was used, etc.).
- When photographs are taken of objects that are small or close up, it is often helpful to use a ruler, pen or coin in the frame to illustrate the scale so one will be able to more easily explain or describe the dimensions or proportions.
- During sampling activities, photographs are to be taken of actual sample collections, conditions of sampling location (e.g., monitoring well head and pad, soil sampling location with respect to surroundings), filled sample containers, and the chain-of-custody seals on the closed and sealed ice chests.
- For engagements conducted for regulatory agencies or in the case of property transactions, permission to take photographs must be obtained from the owner/operator of the facility. Inform the owner/operator that you will point out or explain what you would like to photograph before you actually take the photographs.

FIELD DOCUMENTATION PROCEDURES - TAKING AND DOCUMENTING PHOTOGRAPHS

Page 7 of 9 SOP Number: 03-02-04 Effective Date: 03/01/11

Listed below are three possible scenarios, in order of preference, by which photographs are taken and processed:

- You take the photographs using the TechLaw camera and leave with the film and/ or photograph files.
- If permission for you to take the photographs is denied, negotiate with the owner/operator to have them take the photographs using the TechLaw camera.
- The least desirable approach is when permission to take the photographs is denied, or the facility allows you to take the photographs but will not let you leave with the memory card and/or roll(s) of film. In these cases, negotiate with the owner/operator to have the photographs processed, review them, and provide the required number of copies and negatives (if applicable) to you. In these cases, the client (e.g., EPA) must be aware of these arrangements and approve them. Note: There have been instances where photographs were taken by the owner/operator, but were never provided to TechLaw.

Development/Handling of Photographs and Negatives, and Compact Disks

Commercial developing facilities may be utilized for processing digital photos and/or 35 mm film. A minimum of two 4x6 copies of each photograph must be requested - one for submittal to the client and the other for the TechLaw files. Prior to processing, determine how many copies of the photographs are needed through discussions with the client or Project Manager. For example, some clients require two copies; therefore, in order to have a set for the TechLaw files, three copies must be made. On occasion, the facility will request a copy of the photographs. If the client is a regulatory agency (e.g., EPA), this must be approved by the regulator prior to providing the photographs to the facility. Under no circumstances must the original negatives and/or compact disks be sent to or left with the facility. Financial reimbursement must be agreed to prior to photographic duplication. At the end of the assignment, the negatives and/or compact disks are forwarded to the Program Manager or designee for inclusion in the central files.

In instances where a facility requests that the photographs be treated as CBI (or some other form of confidentiality), the photographs and negatives must be designated, logged, handled, stored, and transmitted in the same manner as any other CBI material.

FIELD DOCUMENTATION PROCEDURES - TAKING AND DOCUMENTING PHOTOGRAPHS

Page 8 of 9 SOP Number: 03-02-04

Effective Date: 03/01/11

Photo Log

The purpose of a photo log is to present the photographs taken during field activities along with brief documentation describing them. Each write-up is to provide the name and number of the unit (e.g., Storage Tank 11, SWMU 3), a description of the unit or activity, and the compass direction. Note any particular background items that should be brought to the attention of the reader (e.g., note the absorbent materials on the floor around the drum). Notations should be limited to pertinent facts. The photo log format may vary depending upon the client's instructions. Two examples are provided in Attachment A.

In addition, maps and drawings (which contain a scale and compass points) can be appended to provide further clarification of the photographs and field logbook entries. Notations can be made on the maps showing where the photographs were taken and in what compass direction, as well as the number on the roll of film (if applicable).

If any post processing (e.g., cropping or zooming) is done to digital photographs, this must be noted in the photo log. The original print, as well as the post-processed print should be provided to the client. Also, if post-processing is conducted, both the original photograph and the post-processed version must be placed on a CD-ROM or DVD-ROM in TechLaw's central files.

Health and Safety

It is TechLaw's policy to maintain an effective program for control of employee exposure to chemical, radiological, and physical stress which is consistent with OSHA and other applicable and appropriate established standards and requirements.

All field personnel will be provided with appropriate protective clothing and safety equipment. At a minimum, this will include steel-toed shoes, safety glasses, and chemical-resistant gloves.

A site-specific health and safety plan must be developed by the Field Team Leader or designee and approved by the TechLaw Health and Safety Director prior to implementation in the field. This plan must be reviewed prior to beginning work.

Any deviation(s) from an approved site-specific health and safety plan must be documented in the field logbook.

FIELD DOCUMENTATION PROCEDURES TAKING AND DOCUMENTING PHOTOGRAPHS

Page 9 of 9 SOP Number: 03-02-04 Effective Date: 03/01/11

QA/QC

None at this time.

Comments/Notes

Upon project completion, the logbook(s), one set of photographs and <u>all</u> negatives and/or compact disks must be forwarded to the central files. 1

Attachments

Attachment A - Photograph Log Example

References

TechLaw, Corporate Quality Management Plan, most current revision.

TechLaw, Health and Safety Program Plan, most current version.

TechLaw, Security Plan for the Control of Confidential Business Information, January 2006.

U.S. Environmental Protection Agency, <u>A Compendium of Superfund Field Operations Methods</u>, EPA/540/P-87/001, OSWER Directive 9355.0-14. Washington, D.C., 1987.

U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, <u>Characterization of Hazardous Waste Sites - A Methods Manual, Volume 1 - Site Investigations,</u> EPA/600/4-84/075, Las Vegas, NV.

U.S. Environmental Protection Agency, Office of Solid Waste, <u>RCRA Facility Assessment</u> Guidance, October 1986.

U.S. Environmental Protection Agency, Region IV, Environmental Service Division, Engineering Support Branch Standard Operating Policies and Procedures, Georgia, February 1991.

Work products such as photographs and negatives that are generated during the performance of government contracts are considered the property of the client. See SOP No. 11-06-XX for further details regarding document control requirements.

ATTACHMENT A [Revised 03/01/11] SOP Number: 03-02-04

Page 1 of 3

PHOTOGRAPH LOG EXAMPLE

- Overview of finished monitoring well LF-2, facing southwest. Note drums containing drill cuttings are in contact with the soil.
- 2. Facing northeast towards finished monitoring well LF-2. Note the well casing has not been grouted around the surface. The drums contain drill cuttings.
- View (looking east) of the Torit Dust Collector. Note the 55-gallon drums which
 receive the particulates that are removed from the indoor air. This is a representative
 unit for the other cyclones in the plant.
- Close-up view of the Former Oil/Water Separator No. 13. This unit is presently operating as a catch basin for oily wastewater prior to piping to the Building 29-N 40,000-Gallon Oily Wastewater Tank (SWMU A-5).
- 5. View (looking east) of the removal pipe for Tank W-82. The Waste Oil Vacuum Truck (SWMU L-46) collects the waste oil/jet fuel at this point. Note the staining on and poor condition of the asphalt. The stained building in the background is a test cell.
- View of Underground Waste Storage Tanks W-89 and W-92 after being exhumed. The
 hole was cut in the side of the tank to examine the metal for value as scrap. This is not
 the original location of these tanks.
- 7. View of surface access area to Underground Waste Oil Storage Tank W-50. Note the oil-stained pavement and absorbent in the area.
- 8. View (looking north) of the manhole and bermed access area to underground Waste Storage Tank W-53. Note oil staining on berm and in containment area.
- 9. View of rinsing split spoon sampler, in foreground, with the drill rig in the background. Note the driller in the background is not wearing gloves.
- 10. Underground Discharge Pipe. Close-up of the asphalt road covering the underground discharge pipe. The location of the pipe is indicated by the parallel cracking. Note: In the background are the former lagoons. View is facing west.

ATTACHMENT A [Revised 03/01/11] SOP Number: 03-02-04

Page 2 of 3

E	car	np.	le
_			_

TECHLAW

		Contract No. XX-XX-XXXX
	8	
	k .	
	*	
	[Insert Photo Here]	
	<u></u>	
	Þ	
	,	
NI N		
		РНОТО#
SITE NAME\EPA ID#		
PHOTOGRAPHER/WITNESS		
DATETIME	DIRECTION	TO#
COMMENTS		
	3	
		-

ATTACHMENT A [Revised 03/01/11]

SOP Number: 03-02-04

Page 3 of 4

A second procedure for photograph logs is by using Avery Labels #5163 (or similar). The completed photograph log labels are peeled and placed on the back of the appropriate photograph. The photographs are then placed into a clear plastic photograph storage sheet. See below for an example of the photograph log labels format:

Photo #T1-01

City: Tulsa, OK

Photo #T1-02

City: Tulsa, OK

Site: Name Industries, Inc.

Time: 1325

Site: Name Industries, Inc.

Time: 1405

Tank 901A, labeled "Used Alkaline Storage".

Tank 901A. Note: dark material in secondary container.

Location for Sample SUI01.

Photo By: Photographers Name

Date: 2/24/07

City: Tulsa, OK

Photo By: Photographers Name Witness: Witness Name Direction: SW

Date: 2/24/07

Witness: Witness Name Direction: SE

Photo #T1-03 Site: Name Industries, Inc.

Time: 1410

Photo #T1-04 City: Tulsa, OK Site: Name Industries, Inc. Time: 1440

Drum located next to Tank 901A (just north). Note: no label is observed on the drum. Sample SUI05 collected from this drum.

Photo of sample iar of sample SUI05. Note: The sample jar is an amber color and does not reflect the color of the material inside.

Photo By: Photographers Name Date: 2/24/07

Witness: Witness Name Direction: SE

Photo By: Photographers Name

Date: 2/24/07

Witness: Witness Name Direction: SE

Photo #T1-05

City: Tulsa, OK

Site: Name Industries, Inc.

Time: 1445

Photo #T1-06 City: Tulsa, OK Site: Name Industries, Inc. Time: 1513

Photo of sample jar for sample SUI01. Note: The sample jar is an amber color and does not reflect the color of the material inside.

Photo of "Used Cyanide Storage" Tank 901B. This is the sample location of Samples SUI02 and SUI03.

Photo By: Photographers Name Date: 2/24/07 Witness: Witness Name Direction: SE

Photo By: Photographers Name Date: 2/24/07 Witness: Witness Name Direction: SW

Photo #T1-07

City: Tulsa, OK

Site: Name Industries, Inc.

Time: 1515

City: Tulsa, OK. Time: 1540

Photo of Acid Tank. Sampling location for sample SUI04.

Site: Name Industries, Inc.

Photo #T1-08

Photo of southern portion of the Covered Hazardous

Photo By: Photographers Name Date: 2/24/07

Witness: Witness Name Direction: NB

Waste Storage Area.

Photo By: Photographers Name Date: 2/24/07 Witness: Witness Name Direction: SE

PACKAGING AND SHIPPING PROCEDURES - ENVIRONMENTAL SAMPLES	Page 1 of 9 SOP Number: 04-02-02 Effective Date: 03/01/11	
Technical Approval: QA Management Approval:	Date: $\frac{3}{11}$	

SOP Description

This Standard Operating Procedure (SOP) describes the procedures involved in the packaging and shipping of environmental samples.

It is the Field Team Leader's responsibility to determine whether the samples meet the definition of environmental or dangerous goods samples and to follow the appropriate packaging and shipping procedures - SOPs and related guidance. Assistance in determining sample categories can be obtained from senior TechLaw staff/managers.

Definitions:

- Environmental Samples normally include drinking water, most groundwater and ambient surface water, soil, sediment, and any samples not containing high levels of hazardous materials or hazardous waste. These types of samples generally are not considered a hazardous waste in 40 CFR 261.3, or hazardous materials under the regulations in 49 CFR 171 through 178. These samples are taken from areas where high concentrations of constituents are <u>not</u> likely to be found.
- Hazardous Material a substance or material, which has been determined by the Secretary of Transportation to be capable of posing an unreasonable risk to health, safety, and property when transported in commerce, and which has been so designated. The term includes hazardous substances (40 CFR 302.4), hazardous waste (40 CFR 261), marine pollutants (49 CFR 172.101, Appendix B), and elevated temperature materials (49 CFR 171.8).
- Dangerous Good an article or substance, which is capable of posing a significant risk to health, safety, or property when transported by air, and which meets the criteria of one or more of nine United Nations (UN) hazard classes and, where applicable, to one of three UN packing groups. The nine classes are

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 2 of 9 SOP Number: 04-02-02 Effective Date: 03/01/11

related to the *type of hazard*, while the packing groups are related to the *degree of danger* within the class. The nine hazard classes and three packing groups are outlined below. (See SOP 04-03-XX, "Packaging and Shipping Procedures — Hazardous Materials/Dangerous Goods" for a complete description of each hazard class.)

Every effort should be made to determine the category of the sample (environmental or dangerous goods) prior to collection of samples. Use available file information about the site or areas to be sampled. Review any existing analytical data from previous samples collected at the site. Review waste generation data, where wastes have been disposed on site and any waste characteristic information provided by the facility or other sources (e.g., EPA or State agency).

Sample Category Determination:

When making a determination whether samples can be shipped as <u>Environmental</u> samples, ask the following questions:

Does the sample pose an unreasonable risk to health, safety or property when transported in commerce (e.g., is it shock sensitive, does it emit toxic or noxious gases)?;

Does the sample meet the criteria of one or more of 9 UN hazard classes? (Attachment A provides definitions for each class):

Class 1 - Explosive

Class 2 - Gas

Class 3 - Flammable liquid

Class 4 - Flammable solid

Class 5 - Oxidizer

Class 6 - Poisonous (toxic)

Class 7 - Radioactive

Class 8 - Corrosive

Class 9 - Miscellaneous dangerous goods

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 3 of 9 SOP Number: 04-02-02

Effective Date: 03/01/11

Is the sample material collected on the list of hazardous material in 49 CFR 172.101 Hazardous Materials Table or the IATA List of Dangerous Goods (IATA Regulations)?; and,

If samples are collected from a drum, tank, impoundment, or other type of source area where hazardous waste/materials are known to be or highly suspected to have been disposed, these samples **DO NOT** qualify as environmental samples. **STOP** and proceed to SOP No. 04-03-XX.

If any of these cases are true, samples <u>must</u> be shipped as a Dangerous Goods. Refer to SOP 04-03-XX for Dangerous Goods Shipping Procedures.

Otherwise, proceed with shipping the environmental samples according to the following procedures.

General Procedures

Environmental samples of solid waste, soil, air or water collected for the sole purpose of testing to determine its characteristics or composition, are excluded from the requirements of 40 CFR 261-270 when: the sample is being transported to a laboratory for purpose of testing; and the shipper complies with DOT, IATA or other applicable shipping requirements.

The appropriate shipping procedures for Environmental samples are detailed in this SOP.

Related SOPs

This SOP is to be used in conjunction with the other relevant or applicable SOPs found in the following SOP categories.

Category No	<u>Category Title</u>
01	General Standard Operating Procedures
02	General Field Procedures
03	Field Documentation Procedures
04	Packaging and Shipping Procedures
05	Field Equipment Operation and Maintenance Procedures
06	Groundwater Sampling/Monitoring and Analysis
	Procedures

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 4 of 9 SOP Number: 04-02-02

Effective Date: 03/01/11

07	Soil/Sediment Sampling and Analysis Procedures
08	Surface Water Sampling and Analysis Procedures
10	Regulatory Compliance Procedures
11	Quality Assurance Procedures
12	Incineration/BIF Sampling and Analysis Procedures
13	Waste Sampling and Analysis Procedures

Related Documentation

The following documents should be used in conjunction with this SOP regarding the packaging and shipment of environmental samples.

- · Field Logbook;
- Site Sampling and Analysis Plan;
- · Health and Safety Plan; and
- Other relevant facility/site information.

Procedures for Packaging and Shipping Environmental Samples

The procedures for packaging and shipping environmental samples are split into four sections: pre-field preparation of the coolers; preparation of sample containers for shipment; preparation of coolers for shipment; and preparation of the shipping documentation.

Prior to any field activities requiring shipments of samples via FedEx or other transportation service (e.g., UPS), contact the shipping company and determine the following: nearest location of the transporter's drop-off office to the field activities; and operating hours of the nearest office.

Pre-field Cooler Preparation

(1) Ensure that a sufficient number of coolers have been acquired to allow all samples to be shipped. Use clean, insulated coolers and remove all tape, markings, labels, and custody seals remaining on the outside of the coolers. If possible, the coolers should be washed inside and out prior to use.

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 5 of 9 SOP Number: 04-02-02

Effective Date: 03/01/11

As a guide, the approximate number of bottles fit in a 54-quart cooler:

Organic WaterInorganic Water1 liter ambers:12or500 ml poly and/orand 40 ml vials:61 liter poly:18 to 20

or

Soils

8 oz. glass and 120 ml glass: 30 to 35

Sample Container Preparation

Once samples have been collected, the following steps should be taken in preparing samples for shipment.

- Groundwater, surface water and soil environmental samples may require preservation prior to shipment to the laboratory. Refer to SOPs Series Nos. 06-XX-XX, 07-XX-XX and 08-XX-XX for sample preservation techniques and the project-specific Quality Assurance Project Plan (QAPP) requirements.
- (2) Label all samples according to the procedures outlined in SOP No. 02-04-XX. Either sample container labels or sample tags may be used.
- Wrap each glass bottle with bubble wrap or use bubble wrap bags. Measure out a piece of bubble wrap large enough to surround the entire bottle. The bubble wrap helps protect the sample containers from breakage during transport. Use tape to secure the bubble wrap around the bottle. There is no need to wrap plastic sample containers with bubble wrap.

For VOA sample containers (40 ml vials), spread out a sheet of bubble wrap one or two sheets long. Two to three vials (i.e., one sample) will be wrapped together using the prepared sheet. Place a vial on the top corner, horizontally, on the width end of the bubble wrap. Starting from the vial

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 6 of 9 SOP Number: 04-02-02 Effective Date: 03/01/11

end, roll the bottles into the remaining bubble wrap. When complete, bend the long roll into a V, and tape the package.

(4) Place each sample container (with the exception of very large containers, e.g., one-gallon amber jugs) inside a resealable zip-lock-type plastic bag (two resealable zip-lock-type bags may be utilized for the one-gallon amber jars). Custody seal tape may be placed around the bag if additional security is desired. For large containers, if a large zip-lock-type bag is not available, wrap the bottle in bubble wrap and place the container in a clean, unused garbage bag. Tape the opening of the bag closed.

Cooler Preparation

- (5) Secure and tape the drain plug on the outside of the cooler with fiber or duct tape to prevent leakage from the plug should a sample container or ice bag leak inside the cooler.
- (6) Place each labeled, wrapped and bagged sample container in the cooler in an upright position. Cardboard separators may also be placed between the sample jars at the discretion of the shipper.
- (7) Fill several large (quart or gallon size) plastic bags (e.g., zip-lock bags) with ice and place each bag of ice within a second zip-lock bag. Place the zip-lock side of the ice filled bag, down into the second bag. (Ice bags are double-bagged to prevent water leakage when the ice melts during transit.) Dry ice should not be used to cool the samples since it is a regulated dangerous good. If dry ice is required for shipment (as in the case of biological tissue sample shipment), the IATA <u>Dangerous Goods</u>

 Regulations or SOP 04-03-XX should be consulted for the proper packing and shipping instructions.

Place the ice bags around the sample containers inside the large outer plastic (garbage) bag to keep the samples cool during shipment. Fill the remainder of the cooler with bubble wrap or other appropriate packing material. Remember to place a temperature blank into the cooler prior to sealing and shipping (see project specific QAPP for applicability).

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 7 of 9 SOP Number: 04-02-02

Effective Date: 03/01/11

(8) Complete the Chain-of-Custody form and place it along with the necessary sample documentation forms (i.e., Chain-of-Custody, Contract Laboratory Program Traffic reports etc.,) inside a zip-lock plastic bag. The procedures for completing the Chain-of-Custody paperwork are discussed in SOP Nos. 02-05-XX. Tape the plastic bag containing the paperwork to the underside of the cooler lid. Close the cooler lid and tape the cooler latch shut to prevent accidental opening during shipment.

(9) Wrap each end of the outside of the cooler with strapping tape such that it cannot be opened during shipment. Normally, the tape is wound around the outside of the cooler for a total of three (3) turns, at both ends of the cooler. Up to two custody seals should be affixed to each side of the cooler across the lid opening so that the cooler cannot be opened without breaking the seals. To prevent the accidental tearing of the seal during shipment, it is advisable to place clear packaging tape over the seal. This ensures that the custody seal is firmly affixed to the cooler, yet it can be seen through the thin layer of tape.

Shipping Paperwork Preparation

- (10) If shipping by air, obtain a standard FedEx airbill. If shipping samples for a government client, use a TechLaw Government FedEx account number.
- Attach a label marked as FROM:, containing the name and address of the shipper to the outside of the cooler lid in the upper left hand corner. In the right hand upper or lower corner of outside cooler lid, place another label marked as TO:, containing the name, address and contact person of the recipient of the cooler. These labels are attached to the cooler as added security in case the FedEx label becomes separated from the cooler. See Diagram A for a visual example.
- (12) Complete the shipper's airbill with the appropriate information. Be sure to include a TechLaw job number in the FedEx box labeled for 'Internal Billing Reference Information.' See Attachment B for an example. Fill in the weight of the package, if you have it. If not, FedEx will complete the information related to the weight of the package. Once completed, affix a TechLaw FedEx airbill or plastic airbill pouch to the outside, center

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 8 of 9 SOP Number: 04-02-02 Effective Date: 03/01/11

of the cooler lid. FedEx has airbills that affix to cooler handles and these may be used in place of other airbills. If an airbill pouch is used, slip the completed FedEx airbill into the pouch. Do not seal the pouch. Make sure you pull the top copy of the FedEx airbill before relinquishing the cooler to FedEx. The copy of the airbill should then be placed into the project files.

Health and Safety Section

It is TechLaw's policy to maintain an effective program for control of employee exposure to chemical, radiological, and physical stress which is consistent with the EPA, DOE, and OSHA established standards and requirements.

All field personnel will be provided with appropriate protective clothing and safety equipment. At a minimum, this will include steel-toed shoes, safety glasses, and chemical-resistant gloves.

Refer to a site-specific health and safety plan for detailed health and safety procedures. This plan should be reviewed prior to beginning any work.

QA/QC Section

Prior to sealing coolers, the Field Team Leader should check all paperwork, address labels and shipping documents for accuracy.

Any deviations in preservation techniques should also be documented in the field logbook and justified. Deviations are to be sufficiently documented to allow repetition of the activity as actually performed.

Comments/Notes

Prior to commencing field activities, ensure that appropriate equipment is readied for the activities. In addition, obtain the location, phone number and office hours of the FedEx office nearest to the field activity site.

Attachments

Attachment A: Sample FedEx Airbill

PACKAGING AND SHIPPING PROCEDURES -ENVIRONMENTAL SAMPLES

Page 9 of 9 SOP Number: 04-02-02

Effective Date: 03/01/11

Attachment B: Diagram of Labeled Cooler.

References

International Air Transport Association (IATA), <u>Dangerous Goods Regulations</u>, Effective from 1/1 to 12/31 of each year.

TechLaw, Corporate Quality Management Plan, most recent version.

TechLaw, Health and Safety Program Plan, most recent version.

U.S. Environmental Protection Agency, <u>Environmental Investigations Standard Operating Procedures and Quality Assurance Manual</u> (EISOPQAM), U.S. EPA Region IV, November 2001.

U.S. Environmental Protection Agency, <u>A Compendium of Superfund Field Operations Methods</u>, EPA/540/P-87/001, Washington, D.C., 1987.

U.S. Environmental Protection Agency, <u>Characterization of Hazardous Waste Sites - A Methods Manual</u>, EPA/600/4-84/075, April 1985.

U.S. Environmental Protection Agency, <u>RCRA Groundwater Monitoring Technical Enforcement Guidance Document</u>, OWSER-9950.1, September 1986.

ATTACHMENT A [Revised 03/01/11] SOP Number: 04-02-02

SAMPLE FEDEX AIRBILL

ATTACHMENT B [Revised 03/01/11] SOP Number: 04-02-02

SAMPLE COOLER

QUALITY ASSURANCE PROJECT PLAN DIMOCK RESDIENTIAL GROUNDWATER SITE REVISION 0 February 2012

APPENDIX C

COLLECTION OF GROUNDWATER SAMPLES FROM DOMESTIC AND MUNICIPAL WATER WELLS FOR DISSOLVED GAS ANALYSIS, ISOTECH LABORATORIES INC.

Collection of Ground Water Samples from Domestic and Municipal Water Wells for Dissolved Gas Analysis

These instructions are based on sampling protocol created by Anthony Gorody, adopted by the Colorado Oil and Gas Conservation Commission, and are reproduced here with their permission.

The basic technique is to fill a white 5 gallon bucket with source water and then fill the 1 liter sample collection bottle fully immersed in the bucket.

When sampling from a pressurized water system, it is recommended to use an outdoor spigot or other source which bypasses any water treatment systems (i.e. water softeners, etc.).

To collect a sample for isotopic and chromatographic analysis from water that is not effervescent, using 1L bottle with septum cap:

After purging the well, fill the 5 gallon bucket with water. Attach a nozzle and 12" length of ¼ inch diameter tubing to the end of the 5/8 inch hose connected to a faucet. Make sure that the flow rates through the tubing are low. Remove the cap of the 1 L bottle and fill it with water. Once the bottle filled, immerse it in the 5 gallon bucket full of water, keeping the tubing at the bottom of the bottle. Place the bottle at the bottom of the bucket under a head of water, and keep water flowing at a low rate until another 2 volumes of water have been displaced from the bottle. Then slowly lift the tubing out of the bottle and immediately cap it under water. No air should be allowed into the 1 L bottle. When finished, tape the cap to the bottle around the neck, pack the bottle upside down in ice, and ship it overnight.

To collect a headspace gas sample from an effervescent water well:

Fill the bottle with water. Submerge the bottle into the 5 gallon bucket filled with well water and invert it. Insert the ¼ inch tubing into the bottle, increase the flow rate to 2-3 gpm and allow the bubbling gases to displace water in a headspace until 1/4 to 1/2 of the water in the bottle has been displaced. Seal the container under water with the septum and screw cap, tighten it securely. When finished, tape the cap to the bottle around the neck, pack the bottle upside down in ice, and ship it overnight.

Please note Isotech's receiving hours of **Monday thru Friday** 8:00 am to 4:30 pm. Ship samples to:

Isotech Laboratories, Inc. 1308 Parkland Court Champaign, IL 61821

These instructions have been provided to simplify the collection of samples for dissolved gas analysis. Although we try to foresee and avoid problems in the field, it is never possible to predict every situation. If you encounter any difficulties, or if any additions or changes in these instructions would be beneficial, please let us know. Isotech Laboratories, Inc. makes no warrantee as to the applicability and/or safety of the procedures described herein.

DIM0204246 DIM0204368

1